Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7231, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903729

RESUMO

The establishment of continental-scale drainage systems on Earth is largely controlled by topography related to plate boundary deformation and buoyant mantle. Drainage patterns of the great rivers in Asia are thought to be highly dynamic during the Cenozoic collision of India and Eurasia, but the drainage pattern and landscape evolution prior to the development of high topography in eastern Tibet remain largely unknown. Here we report the results of petro-stratigraphy, heavy-mineral analysis, and detrital zircon U-Pb dating from late Cretaceous-early Palaeogene sedimentary basin strata along the present-day eastern margin of the Tibetan Plateau. Similarities in the provenance signatures among basins indicate that a continental-scale fluvial system once drained southward into the Neo-Tethyan Ocean. These results challenge existing models of drainage networks that flowed toward the East Asian marginal seas and require revisions to inference of palaeo-topography during the Late Cretaceous. The presence of a continent-scale river may have provided a stable long-term base level which, in turn, facilitated the development of an extensive low-relief landscape that is preserved atop interfluves above the deeply incised canyons of eastern Tibet.

2.
Nature ; 582(7811): 225-229, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528094

RESUMO

The shear force along convergent plate boundary faults (megathrusts) determines the height of mountain ranges that can be mechanically sustained1-4. However, whether the true height of mountain ranges corresponds to this tectonically supported elevation is debated4-7. In particular, climate-dependent erosional processes are often assumed to exert a first-order control on mountain height5-12, although this assumption has remained difficult to validate12. Here we constrain the shear force along active megathrusts using their rheological properties and then determine the tectonically supported elevation using a force balance model. We show that the height of mountain ranges around the globe matches this elevation, irrespective of climatic conditions and the rate of erosion. This finding indicates that mountain ranges are close to force equilibrium and that their height is primarily controlled by the megathrust shear force. We conclude that temporal variations in mountain height reflect long-term changes in the force balance but are not indicative of a direct climate control on mountain elevation.

3.
Philos Trans A Math Phys Eng Sci ; 368(1919): 2501-17, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20403839

RESUMO

Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

4.
Nature ; 435(7038): 81-4, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15875019

RESUMO

Geologic and palaeoseismological data document a marked increase in the slip rates of the Wasatch fault and three adjacent normal faults in the Basin and Range Province during the Late Pleistocene/Early Holocene epochs. The cause of this synchronous acceleration of fault slip and the subsequent clustering of earthquakes during the Holocene has remained enigmatic, although it has been suggested that the coincidence between the acceleration of slip and the shrinkage of Lake Bonneville after the Last Glacial Maximum may indicate a causal relationship. Here we use finite-element models of a discrete normal fault within a rheologically layered lithosphere to evaluate the relative importance of two competing processes that affect fault slip: postglacial unloading (the removal of mass), which decreases the slip rate, and lithospheric rebound, which promotes faster slip. We show that lithospheric rebound caused by regression of Lake Bonneville and deglaciation of adjacent mountain ranges provides a feasible mechanism for the high Holocene rates of faulting in the Wasatch region. Our analysis implies that climate-controlled changes in loads applied to Earth's surface may exert a fundamental control on the slip history of individual normal faults.

5.
Nature ; 417(6887): 428-32, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12024210

RESUMO

In order to understand the dynamics of the India Asia collision zone, it is important to know the strain distribution in Central Asia, whose determination relies on the slip rates for active faults. Many previous slip-rate estimates of faults in Central Asia were based on the assumption that offset landforms are younger than the Last Glacial Maximum (approximately 20 kyr ago). In contrast, here we present surface exposure ages of 40 to 170 kyr, obtained using cosmogenic nuclide dating, for a series of terraces near a thrust at the northern margin of the Tibetan Plateau. Combined with the tectonic offset, the ages imply a long-term slip rate of only about 0.35 mm x yr(-1) for the active thrust, an order of magnitude lower than rates obtained from the assumption that the terraces formed after the Last Glacial Maximum. Our data demonstrate that the preservation potential of geomorphic features in Central Asia is higher than commonly assumed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...