Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167150

RESUMO

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Assuntos
Microbiota , Pennisetum , Pennisetum/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Exsudatos e Transudatos , Microbiologia do Solo , Rizosfera
2.
Front Microbiol ; 14: 1098150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113232

RESUMO

Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).

3.
PLoS One ; 18(2): e0267220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800363

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.


Assuntos
Bacillus thuringiensis , Chryseobacterium , Besouros , Praguicidas , Animais , Zea mays/genética , Chryseobacterium/metabolismo , Praguicidas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Larva/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Resistência a Inseticidas
4.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364003

RESUMO

The current study examines the desiccation-resistant Ramlibacter tataouinensis TTB310T as a model organism for the production of novel exopolysaccharides and their structural features. This bacterium is able to produce dividing forms of cysts which synthesize cell-bound exopolysaccharide. Initial experiments were conducted on the enrichment of cyst biomass for exopolysaccharide production under batch-fed conditions in a pilot-scale bioreactor, with lactate as the source of carbon and energy. The optimized medium produced significant quantities of exopolysaccharide in a single growth phase, since the production of exopolysaccharide took place during the division of the cysts. The exopolysaccharide layer was extracted from the cysts using a modified trichloroacetic acid method. The biochemical characterization of purified exopolysaccharide was performed by gas chromatography, ultrahigh-resolution mass spectrometry, nuclear magnetic resonance, and Fourier-transform infrared spectrometry. The repeating unit of exopolysaccharide was a decasaccharide consisting of ribose, glucose, rhamnose, galactose, mannose, and glucuronic acid with the ratio 3:2:2:1:1:1, and additional substituents such as acetyl, succinyl, and methyl moieties were also observed as a part of the exopolysaccharide structure. This study contributes to a fundamental understanding of the novel structural features of exopolysaccharide from a dividing form of cysts, and, further, results can be used to study its rheological properties for various industrial applications.


Assuntos
Comamonadaceae , Cistos , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ramnose , Polissacarídeos Bacterianos/química
5.
Extremophiles ; 26(2): 18, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652980

RESUMO

Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.


Assuntos
Microbiota , Rizosfera , Argélia , Bactérias , Plantas Tolerantes a Sal/microbiologia , Cloreto de Sódio , Solo , Microbiologia do Solo
6.
Microb Biotechnol ; 15(7): 2083-2096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35502577

RESUMO

Pseudomonads play crucial roles in plant growth promotion and control of plant diseases. However, under natural conditions, other microorganisms competing for the same nutrient resources in the rhizosphere may exert negative control over their phytobeneficial characteristics. We assessed the expression of phytobeneficial genes involved in biocontrol, biostimulation and iron regulation such as, phlD, hcnA, acdS, and iron-small regulatory RNAs prrF1 and prrF2 in Pseudomonas brassicacearum co-cultivated with three phytopathogenic fungi, and two rhizobacteria in the presence or absence of Brassica napus, and in relation to iron availability. We found that the antifungal activity of P. brassicacearum depends mostly on the production of DAPG and not on HCN whose production is suppressed by fungi. We have also shown that the two-competing bacterial strains modulate the plant growth promotion activity of P. brassicacearum by modifying the expression of phlD, hcnA and acdS according to iron availability. Overall, it allows us to better understand the complexity of the multiple molecular dialogues that take place underground between microorganisms and between plants and its rhizosphere microbiota and to show that synergy in favour of phytobeneficial gene expression may exist between different bacterial species.


Assuntos
Alphaproteobacteria , Microbiologia do Solo , Bactérias/genética , Fungos , Ferro , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera
7.
Sci Total Environ ; 797: 148895, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346368

RESUMO

With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.


Assuntos
Rhizobium , Água , Desidratação , Humanos , Raízes de Plantas , Microbiologia do Solo
8.
Sci Rep ; 11(1): 11763, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083699

RESUMO

Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions ('phylogenetic promiscuity'). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS-GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.


Assuntos
Evolução Biológica , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Fosforilação , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Pseudomonas/classificação , Pseudomonas/genética
9.
Microorganisms ; 9(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530561

RESUMO

In the beneficial plant root-associated Pseudomonas brassicacearum strain NFM421, the GacS/GacA two-component system positively controls biofilm formation and the production of secondary metabolites through the synthesis of rsmX, rsmY and rsmZ. Here, we evidenced the genetic amplification of Rsm sRNAs by the discovery of a novel 110-nt long sRNA encoding gene, rsmX-2, generated by the duplication of rsmX-1 (formerly rsmX). Like the others rsm genes, its overexpression overrides the gacA mutation. We explored the expression and the stability of rsmX-1, rsmX-2, rsmY and rsmZ encoding genes under rich or nutrient-poor conditions, and showed that their amount is fine-tuned at the transcriptional and more interestingly at the post-transcriptional level. Unlike rsmY and rsmZ, we noticed that the expression of rsmX-1 and rsmX-2 genes was exclusively GacA-dependent. The highest expression level and longest half-life for each sRNA were correlated with the highest ppGpp and cyclic-di-GMP levels and were recorded under nutrient-poor conditions. Together, these data support the view that the Rsm system in P. brassicacearum is likely linked to the stringent response, and seems to be required for bacterial adaptation to nutritional stress.

10.
Sci Total Environ ; 729: 139020, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498175

RESUMO

Increased global warming, caused by climate change and human activities, will seriously hinder plant development, such as increasing salt concentrations in soils, which will limit water availability for plants. To ensure optimal plant growth under such changing conditions, microorganisms that improve plant growth and health must be integrated into agricultural practices. In the present work, we examined the fate of Vicia faba microbiota structure and interaction network upon inoculation with plant-nodulating rhizobia (Rhizobium leguminosarum RhOF125) and non-nodulating strains (Paenibacillus mucilaginosus BLA7 and Ensifer meliloti RhOL1) in the presence (or absence) of saline stress. Inoculated strains significantly improved plant tolerance to saline stress, suggesting either a direct or indirect effect on the plant response to such stress. To determine the structure of microbiota associated with V. faba, samples of the root-adhering soil (RAS), and the root tissues (RT) of seedlings inoculated (or not) with equal population size of RhOF125, BLA7 and RhOL1 strains and grown in the presence (or absence) of salt, were used to profile the microbial composition by 16S rRNA gene sequencing. The inoculation did not show a significant impact on the composition of the RT microbiota or RAS microbiota. The saline stress shifted the RAS microbiota composition, which correlated with a decrease in Enterobacteriaceae and an increase in Sphingobacterium, Chryseobacterium, Stenotrophomonas, Agrobacterium and Sinorhizobium. When the microbiota of roots and RAS are considered together, the interaction networks for each treatment are quite different and display different key populations involved in community assembly. These findings indicate that upon seed inoculation, community interaction networks rather than their composition may contribute to helping plants to better tolerate environmental stresses. The way microbial populations interfere with each other can have an impact on their functions and thus on their ability to express the genes required to help plants tolerate stresses.


Assuntos
Vicia faba , Bactérias , Humanos , Consórcios Microbianos , Interações Microbianas , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo
11.
Sci Rep ; 9(1): 16505, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712689

RESUMO

Ramlibacter tataouinensis TTB310, a non-photosynthetic betaproteobacterium isolated from a semi-arid region of southern Tunisia, forms both rods and cysts. Cysts are resistant to desiccation and divide when water and nutrients are available. Rods are motile and capable of dissemination. Due to the strong correlation between sunlight and desiccation, light is probably an important external signal for anticipating desiccating conditions. Six genes encoding potential light sensors were identified in strain TTB310. Two genes encode for bacteriophytochromes, while the four remaining genes encode for putative blue light receptors. We determined the spectral and photochemical properties of the two recombinant bacteriophytochromes RtBphP1 and RtBphP2. In both cases, they act as sensitive red light detectors. Cyst divisions and a complete cyst-rod-cyst cycle are the main processes in darkness, whereas rod divisions predominate in red or far-red light. Mutant phenotypes caused by the inactivation of genes encoding bacteriophytochromes or heme oxygenase clearly show that both bacteriophytochromes are involved in regulating the rod-rod division. This process could favor rapid rod divisions at sunrise, after dew formation but before the progressive onset of desiccation. Our study provides the first evidence of a light-based strategy evolved in a non-photosynthetic bacterium to exploit scarse water in a desert environment.


Assuntos
Ciclo Celular/efeitos da radiação , Comamonadaceae/fisiologia , Comamonadaceae/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Luz , Escuridão , Heme Oxigenase (Desciclizante)/metabolismo , Mutação , Fenótipo , Análise Espectral
12.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726948

RESUMO

In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.


Assuntos
Desnitrificação , Microbiota/fisiologia , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Interações entre Hospedeiro e Microrganismos , Microbiota/genética , Exsudatos de Plantas , Raízes de Plantas/química , Raízes de Plantas/classificação , Raízes de Plantas/microbiologia , Plantas/química , Plantas/classificação , RNA Ribossômico 16S/genética , Rizosfera , Solo/química
13.
Front Plant Sci ; 9: 1662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559748

RESUMO

Plant strategies for soil nutrient uptake have the potential to strongly influence plant-microbiota interactions, due to the competition between plants and microorganisms for soil nutrient acquisition and/or conservation. In the present study, we investigate whether these plant strategies could influence rhizosphere microbial activities via root exudation, and contribute to the microbiota diversification of active bacterial communities colonizing the root-adhering soil (RAS) and inhabiting the root tissues. We applied a DNA-based stable isotope probing (DNA-SIP) approach to six grass species distributed along a gradient of plant nutrient resource strategies, from conservative species, characterized by low nitrogen (N) uptake, a long lifespans and low root exudation level, to exploitative species, characterized by high rates of photosynthesis, rapid rates of N uptake and high root exudation level. We analyzed their (i) associated microbiota composition involved in root exudate assimilation and soil organic matter (SOM) degradation by 16S-rRNA-based metabarcoding. (ii) We determine the impact of root exudation level on microbial activities (denitrification and respiration) by gas chromatography. Measurement of microbial activities revealed an increase in denitrification and respiration activities for microbial communities colonizing the RAS of exploitative species. This increase of microbial activities results probably from a higher exudation rate and more diverse metabolites by exploitative plant species. Furthermore, our results demonstrate that plant nutrient resource strategies have a role in shaping active microbiota. We present evidence demonstrating that plant nutrient use strategies shape active microbiota involved in root exudate assimilation and SOM degradation via root exudation.

15.
Front Plant Sci ; 8: 1288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798755

RESUMO

Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the "RAS/RT ratio." Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil.

16.
Front Microbiol ; 8: 2592, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375498

RESUMO

Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.

17.
Environ Sci Technol ; 50(13): 6892-901, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27243334

RESUMO

Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg(-1)). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.


Assuntos
Microbiologia do Solo , Solo/química , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera
18.
Curr Opin Biotechnol ; 41: 9-13, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27019410

RESUMO

Microbial communities associated with a plant host, constituting a holobiont, affect the physiology and growth of the plant via metabolites that are mainly derived from their photosynthates. The structure and function of active microbial communities that assimilate root exudates can be tracked by using stable isotope probing (SIP) approaches. This article reviews results from ongoing SIP research in plant-microbe interactions, with a specific focus on investigating the fate of fresh and recalcitrant carbon in the rhizosphere with 13C enriched-root exudates, in addition to identifying key players in carbon cycling. Finally, we discuss new SIP applications that have the potential to identify novel enzymes implicated in rhizoremediation or plant genes dedicated to root exudation by combining SIP approaches and genome wide associations studies.


Assuntos
Isótopos de Carbono/análise , Marcação por Isótopo/métodos , Raízes de Plantas/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Raízes de Plantas/microbiologia , Plantas/microbiologia
20.
Sci Total Environ ; 539: 135-142, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356186

RESUMO

The bloom-containing water bodies may have an impact due to cyanotoxins production on other microorganisms and aquatic plants. Where such water is being used for crops irrigation, the presence of cyanotoxins may also have a toxic impact on terrestrial plants and their rhizosphere microbiota. For that purpose, PCR-based 454 pyrosequencing was applied to phylogenetically characterize the bacterial community of Medicago sativa rhizosphere in response to cyanotoxins extract. This analysis revealed a wide diversity at species level, which decreased from unplanted soil to root tissues indicating that only some populations were able to compete for nutrients and niches in this selective habitat. Gemmatimonas, Actinobacteria, Deltaproteobacteria and Opitutae mainly inhabited the bulk soil, whereas, the root-adhering soil and the root tissues were inhabited by Gammaproteobacteria and Alphaproteobacteria. The proportion of these populations fluctuated in response to cyanotoxins extract exposure. Betaproteobacteria proportion increased in the three studied compartments, whereas Gammaproteobacteria proportion decreased except in the bulk soil. This study revealed the potential toxicity of cyanotoxins extract towards Actinobacteria, Gemmatimonas, Deltaproteobacteria, and Gammaproteobacteria, however Clostridia, Opitutae and bacteria related with Betaproteobacteria, were stimulated denoting their tolerance. Altogether, these data indicate that crop irrigation using cyanotoxins containing water might alter the rhizosphere functioning.


Assuntos
Toxinas Bacterianas/toxicidade , Medicago sativa/microbiologia , Rizosfera , Microbiologia do Solo , Poluentes do Solo/toxicidade , Produtos Agrícolas , Microbiota/efeitos dos fármacos , Filogenia , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...