Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237782

RESUMO

Wastewater non-potable reuse involves further processing of secondary effluent to a quality level acceptable for reuse and is a promising solution to combating water scarcity. Recalcitrant chromophores in landfill leachate challenge the water quality for non-potable reuse when leachate is co-treated with municipal wastewater. In this study, we first use multivariate statistical analysis to reveal that leachate is an important source (with a Pearson's coefficient of 0.82) of recalcitrant chromophores in the full-scale membrane bioreactor (MBR) effluent. We then evaluate the removal efficacies of chromophores by chlorination, breakpoint chlorination, and the chlorination-UV/chlorine advanced oxidation treatment. Conventional chlorination and breakpoint chlorination only partially remove chromophores, leaving a colour level exceeding the standards for non-potable reuse (>20 Hazen units). We demonstrate that pre-chlorination (with an initial chlorine dosing of 20 mg/L as Cl2) followed by UV radiation (with a UV fluence of 500 mJ/cm2) effectively degraded recalcitrant chromophores (>90%). By quantifying the electron donating capacity (EDC) and radical scavenging capacity (RSC) of the reclaimed water, we demonstrate that pre-chlorination reduces EDC and RSC by up to 64%, increases UV transmittance by 32%, and increases radical yields from UV photolysis of chlorine by 1.7-2.2 times. The findings advance fundamental understanding of the alteration of dissolved coloured substances by (photo)chlorination treatment and provide implications for applying advanced oxidation processes in treating wastewater effluents towards sustainable non-potable reuse.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Cloro , Halogênios , Oxirredução , Raios Ultravioleta
2.
Sci Total Environ ; 912: 169241, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072271

RESUMO

Groundwater has been known as the second largest freshwater storage in the world, following surface water. Over the years, groundwater has already been under overwhelming pressure to satisfy human needs for artificial activities around the world. Meanwhile, the most noticeable footprint of human activities is the impact of climate change. Climate change has the potential to change the physical and chemical properties of groundwater, thereby affecting its ecological functions. This study summarizes existing research affiliated with the possible effects of a changing climate on the quality of groundwater, including changes in water availability, increased salinity and pollution from extreme weather events, and the potentiality of seawater intrusion into coastal aquifers. Previous works dealing with groundwater-induced responses to the climate system and climate impacts on groundwater quality through natural and anthropogenic processes have been reviewed. The climate-induced changes in groundwater quality including pH, dissolved oxygen level, salinity, and concentrations of organic and inorganic compounds were assessed. Some future research directions are proposed, including exploring the potential changes in the occurrences and fate of micropollutants in groundwater, examining the relationship between the increase of microcystin in groundwater and climate change, studying the changes in the stability of metals and metal complexation, and completing studies across different regional climate regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...