Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 286(22): 19381-91, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21489989

RESUMO

Testicular cancer is highly curable with cisplatin-based therapy, and testicular cancer-derived human embryonal carcinoma (EC) cells undergo a p53-dominant transcriptional response to cisplatin. In this study, we have discovered that a poorly characterized member of the death-associated protein family of serine/threonine kinases, STK17A (also called DRAK1), is a novel p53 target gene. Cisplatin-mediated induction of STK17A in the EC cell line NT2/D1 was prevented with p53 siRNA. Furthermore, STK17A was induced with cisplatin in HCT116 and MCF10A cells but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element that binds endogenous p53 in a cisplatin-dependent manner was identified 5 kb upstream of the first coding exon of STK17A. STK17A is not present in the mouse genome, but the closely related gene STK17B is induced with cisplatin in mouse NIH3T3 cells, although this induction is p53-independent. Interestingly, in human cells containing both STK17A and STK17B, only STK17A is induced with cisplatin. Knockdown of STK17A conferred resistance to cisplatin-induced growth suppression and apoptotic cell death in EC cells. This was associated with the up-regulation of detoxifying and antioxidant genes, including metallothioneins MT1H, MT1M, and MT1X that have previously been implicated in cisplatin resistance. In addition, knockdown of STK17A resulted in decreased cellular reactive oxygen species, whereas STK17A overexpression increased reactive oxygen species. In summary, we have identified STK17A as a novel direct target of p53 and a modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Carcinoma Embrionário/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Serina-Treonina Quinases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Testiculares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Carcinoma Embrionário/tratamento farmacológico , Carcinoma Embrionário/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metalotioneína , Camundongos , Células NIH 3T3 , Proteínas Serina-Treonina Quinases/genética , Elementos de Resposta/genética , Especificidade da Espécie , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/genética
2.
Cancer Res ; 69(24): 9360-6, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19951990

RESUMO

Testicular germ cell tumors (TGCT) are the most common solid tumors of 15- to 35-year-old men. TGCT patients are frequently cured with cytotoxic cisplatin-based therapy. However, TGCT patients refractory to cisplatin-based chemotherapy have a poor prognosis, as do those having a late relapse. Pluripotent embryonal carcinomas (EC) are the malignant counterparts to embryonic stem cells and are considered the stem cells of TGCTs. Here, we show that human EC cells are highly sensitive to 5-aza-deoxycytidine (5-aza-CdR) compared with somatic solid tumor cells. Decreased proliferation and survival with low nanomolar concentrations of 5-aza-CdR is associated with ATM activation, H2AX phosphorylation, increased expression of p21, and the induction of genes known to be methylated in TGCTs (MGMT, RASSF1A, and HOXA9). Notably, 5-aza-CdR hypersensitivity is associated with markedly abundant expression of the pluripotency-associated DNA methyltransferase 3B (DNMT3B) compared with somatic tumor cells. Knockdown of DNMT3B in EC cells results in substantial resistance to 5-aza-CdR, strongly indicating that 5-aza-CdR sensitivity is mechanistically linked to high levels of DNMT3B. Intriguingly, cisplatin-resistant EC cells retain an exquisite sensitivity to low-dose 5-aza-CdR treatment, and pretreatment of 5-aza-CdR resensitizes these cells to cisplatin-mediated toxicity. This resensitization is also partially dependent on high DNMT3B levels. These novel findings indicate that high expression of DNMT3B, a likely byproduct of their pluripotency and germ cell origin, sensitizes TGCT-derived EC cells to low-dose 5-aza-CdR treatment.


Assuntos
Azacitidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/biossíntese , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/enzimologia , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/enzimologia , Proteínas Mutadas de Ataxia Telangiectasia , Azacitidina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Decitabina , Relação Dose-Resposta a Droga , Genes Supressores de Tumor , Histonas/metabolismo , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Neoplasias Testiculares/genética , Proteínas Supressoras de Tumor/metabolismo , DNA Metiltransferase 3B
3.
PLoS One ; 4(10): e7639, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19862326

RESUMO

BACKGROUND: Mechanisms that underlie oscillatory transcriptional activity of nuclear receptors (NRs) are incompletely understood. Evidence exists for rapid, cyclic recruitment of coregulatory complexes upon activation of nuclear receptors. RIP140 is a NR coregulator that represses the transactivation of agonist-bound nuclear receptors. Previously, we showed that RIP140 is inducible by all-trans retinoic acid (RA) and mediates limiting, negative-feedback regulation of retinoid signaling. METHODOLOGY AND FINDINGS: Here we report that in the continued presence of RA, long-paced oscillations of retinoic acid receptor (RAR) activity occur with a period ranging from 24 to 35 hours. Endogenous expression of RIP140 and other RA-target genes also oscillate in the presence of RA. Cyclic retinoid receptor transactivation is ablated by constitutive overexpression of RIP140. Further, depletion of RIP140 disrupts cyclic expression of the RA target gene HOXA5. Evidence is provided that RIP140 may limit RAR signaling in a selective, non-redundant manner in contrast to the classic NR coregulators NCoR1 and SRC1 that are not RA-inducible, do not cycle, and may be partially redundant in limiting RAR activity. Finally, evidence is provided that RIP140 can repress and be induced by other nuclear receptors in a manner that suggests potential participation in other NR oscillations. CONCLUSIONS AND SIGNIFICANCE: We provide evidence for novel, long-paced oscillatory retinoid receptor activity and hypothesize that this may be paced in part, by RIP140. Oscillatory NR activity may be involved in mediating hormone actions of physiological and pathological importance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Receptores do Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Oscilometria , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...