Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 18(2): 352-366, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076781

RESUMO

Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Fator 1 de Crescimento de Fibroblastos/genética , Memória , Fatores de Transcrição/metabolismo , Animais , Calcineurina/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Potenciação de Longa Duração/genética , Lisina Acetiltransferase 5/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Neurônios/metabolismo , Transporte Proteico , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
2.
J Neurosci ; 36(4): 1185-202, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818507

RESUMO

Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT: In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an important role in adult hippocampal neurogenesis and spinogenesis. In addition, stathmin mutation led to impaired NMDA receptor-dependent and neurogenesis-associated memory and did not affect NMDA receptor-independent memory. Moreover, biochemical analysis suggested that stathmin regulates the synaptic transport of NMDA receptors, which in turn influence CREB-mediated gene transcription machinery. Overall, these data suggest that stathmin is an important molecule for neurogenesis, spinogenesis, and NMDA receptor-dependent learning and memory.


Assuntos
Espinhas Dendríticas/fisiologia , Giro Denteado/fisiologia , Memória/fisiologia , Neurogênese/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Fator de Transcrição STAT4/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Giro Denteado/citologia , Aprendizagem por Discriminação/fisiologia , Proteínas do Domínio Duplacortina , Comportamento Exploratório/fisiologia , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica/genética , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeos/farmacologia , Fator de Transcrição STAT4/genética , Frações Subcelulares/metabolismo
3.
Nat Commun ; 5: 4389, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25007915

RESUMO

Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals.


Assuntos
Envelhecimento/fisiologia , Aprendizagem/fisiologia , Transtornos da Memória/fisiopatologia , Memória/fisiologia , Microtúbulos/fisiologia , Estatmina/fisiologia , Animais , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas dos Microtúbulos/fisiologia , Mutação/genética , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Transdução de Sinais/fisiologia , Estatmina/deficiência , Estatmina/genética , Tubulina (Proteína)/fisiologia
4.
PLoS One ; 7(2): e30942, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312434

RESUMO

Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.


Assuntos
Tonsila do Cerebelo/fisiologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Medo/psicologia , Córtex Pré-Frontal/fisiologia , Receptores da Bombesina/metabolismo , Estatmina/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Técnicas de Inativação de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Receptores da Bombesina/deficiência , Receptores da Bombesina/genética , Estatmina/deficiência , Estatmina/genética
5.
Behav Brain Res ; 223(1): 233-8, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21545813

RESUMO

Since zinc transporter ZnT3 is localized to the hippocampus and perirhinal cortex, we used ZnT3 knockout mice (KO) to analyze the role of ZnT3 in memory and behavior dependent on these brain regions. ZnT3KO mice were normal in initial learning in the standard water maze but had difficulty finding a second platform location. The mutants showed increased social interaction but were deficient in social and object recognition memory. These data suggest that ZnT3 is involved in certain types of spatial memory and behavior dependent on the hippocampus and perirhinal cortex.


Assuntos
Proteínas de Transporte/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Memória/fisiologia , Lobo Temporal/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Learn Mem ; 17(11): 582-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21036893

RESUMO

Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.


Assuntos
Proteínas de Transporte/metabolismo , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Instinto , Proteínas de Membrana/metabolismo , Estimulação Acústica/métodos , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Regulação da Expressão Gênica/genética , Deficiências da Aprendizagem/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Dor/genética , Limiar da Dor/fisiologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...