Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230111, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705186

RESUMO

Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Acústica , Asas de Animais , Animais , Abelhas/fisiologia , Asas de Animais/fisiologia , Voo Animal/fisiologia , Vocalização Animal/fisiologia , Polinização , Som
2.
PLoS One ; 13(12): e0204787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566476

RESUMO

BACKGROUND: The study of biodiversity spatial patterns along ecological gradients can serve to elucidate factors shaping biological community structure and predict ecosystem responses to global change. Ant assemblages are particularly interesting as study cases, because ant species play a key role in many ecosystem processes and have frequently been identified as useful bioindicators. METHODS: Here we analyzed the response of ant species richness and assemblage composition across elevational gradients in Mediterranean grasslands and subsequently tested whether these responses were stable spatially and temporally. We sampled ant assemblages in two years (2014, 2015) in two mountain ranges (Guadarrama, Serrota) in Central Spain, along an elevational gradient ranging from 685 to 2390 m a.s.l. RESULTS: Jackknife estimates of ant species richness ranged from three to 18.5 species and exhibited a hump-shaped relationship with elevation that peaked at mid-range values (1100-1400 m). This pattern was transferable temporally and spatially. Elevation was related to ant assemblage composition and facilitated separation of higher elevation assemblages (> 1700 m) from the remaining lower elevation species groups. Ant assemblages were nested; therefore species assemblages with a decreased number of species were a subset of the richer assemblages, although species turnover was more important than pure nestedness in all surveys. The degree of nestedness changed non-linearly as a cubic polynomial with elevation. These assembly patterns coincided more clearly over time than between the two study regions. DISCUSSION: We suggest double environmental stressors typical of Mediterranean mountains explained species richness patterns: drought at low elevations and cold temperatures at high elevations likely constrained richness at both extremes of elevational gradients. The fact that species turnover showed a dominant role over pure nestedness suggested current ant assemblages were context-dependent and highly vulnerable to global change, which threatens the conservation of present day native ant communities, particularly at high elevations.


Assuntos
Altitude , Formigas/fisiologia , Biodiversidade , Pradaria , Animais , Formigas/classificação , Espanha
3.
Ecol Evol ; 7(3): 831-844, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168020

RESUMO

Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta-analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land-use changes and regulating services in vegetation and invertebrates. Seventy-five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential "key functional traits," understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying "key functional traits" would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.

4.
Oecologia ; 181(4): 959-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26658737

RESUMO

Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four biotic groups (ants, birds, herbaceous, woody vegetation) among four land-use types that represent a gradient of land-use intensity in a Mediterranean landscape (Mediterranean shrublands, dehesas, mixed-pine forests, olive groves). Analyses were performed separately at two different spatial scales: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among communities is much greater than functional trait turnover. Finally, we found that TD and FD did not vary consistently, but rather followed different trajectories that largely depended on the biotic group and the intensity of land-use transformation. Our results highlight that the relationship of land use with TD and FD is highly complex and context-dependent.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Pinus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...