Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 321: 121080, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702428

RESUMO

Medical wastes include all solid and liquid wastes that are produced during the treatment, diagnosis, and immunisation of animals and humans. A significant proportion of medical waste is infectious, hazardous, radioactive, and contains potentially toxic elements (PTEs) (i.e., heavy metal (loids)). PTEs, including arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), are mostly present in plastic, syringes, rubber, adhesive plaster, battery wastes of medical facilities in elemental form, as well as oxides, chlorides, and sulfates. Incineration and sterilisation are the most common technologies adopted for the safe management and disposal of medical wastes, which are primarily aimed at eliminating deadly pathogens. The ash materials derived from the incineration of hazardous medical wastes are generally disposed of in landfills after the solidification/stabilisation (S/S) process. In contrast, the ash materials derived from nonhazardous wastes are applied to the soil as a source of nutrients and soil amendment. The release of PTEs from medical waste ash material from landfill sites and soil application can result in ecotoxicity. The present study is a review paper that aims to critically review the dynamisms of PTEs in various environmental media after medical waste disposal, the environmental and health implications of their poor management, and the common misconceptions regarding medical waste.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Mercúrio , Metais Pesados , Eliminação de Resíduos , Animais , Humanos , Incineração , Metais Pesados/análise , Resíduos Perigosos/análise , Resíduos Sólidos/análise
2.
Environ Res ; 216(Pt 2): 114496, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257453

RESUMO

The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Ecossistema , Pandemias , Plásticos , SARS-CoV-2
3.
J Environ Manage ; 222: 155-163, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29843088

RESUMO

A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m-3d-1, 0.3 kg-NH4+-N m-3d-1, and 0.12 kg-N m-3d-1. Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Bactérias , Nitrificação , Nitrogênio/química , Nitrogênio/isolamento & purificação , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...