Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Proteomics ; 129: 16-24, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26171723

RESUMO

ProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scoring function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS spectra leading to further improvements in specificity when compared to low resolution tandem MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster. This article is part of a Special Issue entitled: Computational Proteomics.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Mapeamento de Peptídeos/métodos , Proteínas/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Mineração de Dados/métodos , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
2.
Genet Mol Res ; 7(2): 342-56, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18551400

RESUMO

Spectral counting is a strategy to quantify relative protein concentrations in pre-digested protein mixtures analyzed by liquid chromatography online with tandem mass spectrometry. In the present study, we used combinations of normalization and statistical (feature selection) methods on spectral counting data to verify whether we could pinpoint which and how many proteins were differentially expressed when comparing complex protein mixtures. These combinations were evaluated on real, but controlled, experiments (yeast lysates were spiked with protein markers at different concentrations to simulate differences), which were therefore verifiable. The following normalization methods were applied: total signal, Z-normalization, hybrid normalization, and log preprocessing. The feature selection methods were: the Golub index, the Student t-test, a strategy based on the weighting used in a forward-support vector machine (SVM-F) model, and SVM recursive feature elimination. The results showed that Z-normalization combined with SVM-F correctly identified which and how many protein markers were added to the yeast lysates for all different concentrations. The software we used is available at http://pcarvalho.com/patternlab.


Assuntos
Proteínas/análise , Proteômica/métodos , Algoritmos , Reprodutibilidade dos Testes , Software
3.
Genet. mol. res. (Online) ; 7(2): 342-356, 2008. tab, ilus
Artigo em Inglês | LILACS | ID: lil-641005

RESUMO

Spectral counting is a strategy to quantify relative protein concentrations in pre-digested protein mixtures analyzed by liquid chromatography online with tandem mass spectrometry. In the present study, we used combinations of normalization and statistical (feature selection) methods on spectral counting data to verify whether we could pinpoint which and how many proteins were differentially expressed when comparing complex protein mixtures. These combinations were evaluated on real, but controlled, experiments (yeast lysates were spiked with protein markers at different concentrations to simulate differences), which were therefore verifiable. The following normalization methods were applied: total signal, Z-normalization, hybrid normalization, and log preprocessing. The feature selection methods were: the Golub index, the Student t-test, a strategy based on the weighting used in a forward-support vector machine (SVM-F) model, and SVM recursive feature elimination. The results showed that Z-normalization combined with SVM-F correctly identified which and how many protein markers were added to the yeast lysates for all different concentrations. The software we used is available at http://pcarvalho.com/patternlab.


Assuntos
Proteínas/análise , Proteômica/métodos , Algoritmos , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...