Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(26): 2735-2748, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38518105

RESUMO

ABSTRACT: Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.


Assuntos
Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Receptores de Interleucina-7/antagonistas & inibidores , Camundongos SCID , Fagocitose/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Feminino , Camundongos Endogâmicos NOD , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
2.
Blood Adv ; 6(16): 4847-4858, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35820018

RESUMO

Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.


Assuntos
Citofagocitose , Linfoma Difuso de Grandes Células B , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Criança , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas
3.
J Chromatogr A ; 1459: 67-77, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27397926

RESUMO

This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development.


Assuntos
Anticorpos Monoclonais/metabolismo , Cromatografia por Troca Iônica , Modelos Moleculares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cátions/química , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
4.
Cell Microbiol ; 15(7): 1059-69, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23351274

RESUMO

Chlamydiae are obligate intracellular bacterial pathogens that cause trachoma, sexually transmitted diseases and respiratory infections in humans. Fragmentation of the host cell Golgi apparatus (GA) is essential for chlamydial development, whereas the consequences for host cell functions, including cell migration are not well understood. We could show that Chlamydia trachomatis-infected cells display decelerated migration and fail to repopulate monolayer scratch wounds. Furthermore, infected cells lost the ability to reorient the fragmented GA or the microtubule organization centre (MTOC) after a migratory stimulus. Silencing of golgin-84 phenocopied this defect in the absence of the infection. Interestingly, GA stabilization via knockdown of Rab6A and Rab11A improved its reorientation in infected cells and it was fully rescued after inhibition of Golgi fragmentation with WEHD-fmk. These results show that C. trachomatis infection perturbs host cell migration on multiple levels, including the alignment of GA and MTOC.


Assuntos
Movimento Celular , Polaridade Celular , Chlamydia trachomatis/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Interações Hospedeiro-Patógeno , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo
5.
PLoS Pathog ; 7(9): e1002283, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21990969

RESUMO

Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Oligopeptídeos/farmacologia , Linhagem Celular , Sistema Livre de Células , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/patogenicidade , Chlamydophila pneumoniae/efeitos dos fármacos , Chlamydophila pneumoniae/crescimento & desenvolvimento , Chlamydophila pneumoniae/patogenicidade , Endopeptidases/biossíntese , Complexo de Golgi/microbiologia , Complexo de Golgi/patologia , Proteínas da Matriz do Complexo de Golgi , Células HEK293 , Células HeLa , Humanos , Oligopeptídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/metabolismo
6.
PLoS Pathog ; 5(10): e1000615, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816566

RESUMO

Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development.


Assuntos
Chlamydia trachomatis/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Cegueira/epidemiologia , Cegueira/microbiologia , Divisão Celular , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/transmissão , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Retículo Endoplasmático/microbiologia , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Incidência , Infertilidade Feminina/microbiologia , Interferência de RNA , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/transmissão , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...