Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 81(11): 113707, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21133478

RESUMO

Studying the interaction of spin-polarized currents with the magnetization configuration is of high interest due to the possible applications and the novel physics involved. High-resolution magnetic imaging is one of the key techniques necessary for a better understanding of these effects. Here, we present an extension to a magnetic microscope that allows for in situ current injection into the structure investigated, and furthermore for the study of current induced magnetization changes during pulsed current injection. The developed setup is highly flexible and can be used for a wide range of investigations. Examples of current-induced domain wall motion and vortex core displacements measured using this setup are presented.

2.
Phys Rev Lett ; 105(7): 076601, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868064

RESUMO

We study the depinning of domain walls by pure diffusive spin currents in a nonlocal spin valve structure based on two ferromagnetic Permalloy elements with copper as the nonmagnetic spin conduit. The injected spin current is absorbed by the second Permalloy structure with a domain wall, and from the dependence of the wall depinning field on the spin current density we find an efficiency of 6×10{-14} T/(A/m{2}), which is more than an order of magnitude larger than for conventional current induced domain-wall motion. Theoretically we find that this high efficiency arises from the surface torques exerted by the absorbed spin current that lead to efficient depinning.

3.
Phys Rev Lett ; 104(6): 067201, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366851

RESUMO

Using photoemission electron microscopy, we image the dynamics of a field pulse excited domain wall in a Permalloy nanowire. We find a delay in the onset of the wall motion with respect to the excitation and an oscillatory relaxation of the domain wall back to its equilibrium position, defined by an external magnetic field. The origin of both of these inertia effects is the transfer of energy between energy reservoirs. By imaging the distribution of the exchange energy in the wall spin structure, we determine these reservoirs, which are the basis of the domain wall mass concept.

4.
Phys Rev Lett ; 105(18): 187203, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231132

RESUMO

We use a pump-probe photoemission electron microscopy technique to image the displacement of vortex cores in Permalloy discs due to the spin-torque effect during current pulse injection. Exploiting the distinctly different symmetries of the spin torques and the Oersted-field torque with respect to the vortex spin structure we determine the torques unambiguously, and we quantify the amplitude of the strongly debated nonadiabatic spin torque. The nonadiabaticity parameter is found to be ß=0.15±0.07, which is more than an order of magnitude larger than the damping constant α, pointing to strong nonadiabatic transport across the high magnetization gradient vortex spin structures.

5.
Phys Rev Lett ; 100(6): 066603, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18352502

RESUMO

By direct imaging we determine spin structure changes in Permalloy wires and disks due to spin transfer torque as well as the critical current densities for different domain wall types. Periodic domain wall transformations from transverse to vortex walls and vice versa are observed, and the transformation mechanism occurs by vortex core displacement perpendicular to the wire. The results imply that the nonadiabaticity parameter beta does not equal the damping alpha, in agreement with recent theoretical predictions. The vortex core motion perpendicular to the current is further studied in disks revealing that the displacement in opposite directions can be attributed to different polarities of the vortex core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...