Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt A): 1074-1084, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647716

RESUMO

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of ß-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the ß-lactoglobulin adsorption and its effect on the premix membrane emulsification of ß-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed ß-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of ß-lactoglobulin) and the treatment of the silica surface (hydrophilization). The ß-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of ß-lactoglobulin. Although the conformation of the adsorbed ß-lactoglobulin layer varies with membrane treatment and the solvent properties, the ß-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after ß-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.


Assuntos
Lactoglobulinas , Água , Adsorção , Lactoglobulinas/química , Emulsões/química , Solventes , Água/química
2.
Colloids Surf B Biointerfaces ; 185: 110580, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732392

RESUMO

The use of Pickering emulsions for biocatalytical applications has recently received increased attention in cases where hydrophobic reactants are involved. For process applications, knowledge of the emulsion's rheology is crucial for the fluid dynamical design of equipment and selection of operating conditions. Colloidal silica nanoparticle stabilized Pickering emulsions usually exhibit shear-thinning behavior caused by a complex particle-particle network. While this has been observed by many authors, no publication has yet dealt with the rheology of silica nanoparticle stabilized Pickering emulsions containing enzymes. Thus, the aim of this study was to investigate the impact of the commonly used biocatalyst lipase (type and concentration), the dispersed phase volume fraction and the silica particle concentration on the rheological behavior of water-in-oil Pickering emulsions. For this purpose, the impact of the named parameters on the viscosity curves were measured. Lipases reduced the viscosities and transferred the rheological behavior from shear-thinning to Newtonian, which might be due to interactions of the lipase molecules via the formation of intermolecular disulfide bonds, which disturb the hydrogen-bond based silica particle-particle network. However, by increasing the dispersed phase volume fraction or the silica particle concentration the rheological behavior of emulsions became again shear-thinning. This work will help to produce bioactive Pickering emulsions with tailor-made characteristics.


Assuntos
Proteínas de Bactérias/química , Coloides/química , Emulsões , Lipase/química , Nanopartículas/química , Reologia , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Água/química
3.
Eng Life Sci ; 17(5): 470-478, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32624792

RESUMO

Virus particle (VP) aggregation can have serious implications on clinical safety and efficacy of virus-based therapeutics. Typically, VP are suspended in buffers to establish defined product properties. Salts used to achieve these properties show specific effects in chemical and biological systems in a reoccurring trend known as Hofmeister series (HS). Hofmeister series effects are ubiquitous and can affect colloidal particle systems. In this study, influences of different ions (anions: SO4 2-, HPO4 2-, Cl-, Br-, NO3 -, I-; cations: K+, Na+, Li+, Mg2+, Ca2+) on particle size distributions of cell culture-derived influenza VP were investigated. For the experimental setup, influenza virus A/Puerto Rico/8/34 (H1N1) VP produced in adherent and suspension Madin Darby canine kidney cells were used. Inactivated and concentrated virus harvests were dialyzed against buffers containing the ions of interest, followed by differential centrifugal sedimentation to measure particle size distributions. VP from both cell lines showed no aggregation over a wide range of buffers containing different salts in concentrations ≥60 mM. However, when dialyzed to low salt or Ca2+ buffers, VP produced in adherent cells showed increased aggregation compared to VP produced in suspension cells. Additionally, changes in VP diameters depending on specific ion concentrations were observed that partially reflected the HS trend.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...