Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 223(2): e13039, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29356345

RESUMO

AIM: The aim of this study was to investigate the effects of 4 consecutive simulated night shifts on glucose homeostasis, mitochondrial function and central and peripheral rhythmicities compared with a simulated day shift schedule. METHODS: Seventeen healthy adults (8M:9F) matched for sleep, physical activity and dietary/fat intake participated in this study (night shift work n = 9; day shift work n = 8). Glucose tolerance and insulin sensitivity before and after 4 nights of shift work were measured by an intravenous glucose tolerance test and a hyperinsulinaemic euglycaemic clamp respectively. Muscles biopsies were obtained to determine insulin signalling and mitochondrial function. Central and peripheral rhythmicities were assessed by measuring salivary melatonin and expression of circadian genes from hair samples respectively. RESULTS: Fasting plasma glucose increased (4.4 ± 0.1 vs. 4.6 ± 0.1 mmol L-1 ; P = .001) and insulin sensitivity decreased (25 ± 7%, P < .05) following the night shift, with no changes following the day shift. Night shift work had no effect on skeletal muscle protein expression (PGC1α, UCP3, TFAM and mitochondria Complex II-V) or insulin-stimulated pAkt Ser473, pTBC1D4Ser318 and pTBC1D4Thr642. Importantly, the metabolic changes after simulated night shifts occurred despite no changes in the timing of melatonin rhythmicity or hair follicle cell clock gene expression across the wake period (Per3, Per1, Nr1d1 and Nr1d2). CONCLUSION: Only 4 days of simulated night shift work in healthy adults is sufficient to reduce insulin sensitivity which would be expected to increase the risk of T2D.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Sono/fisiologia , Adulto , Glicemia/metabolismo , Feminino , Expressão Gênica/fisiologia , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Admissão e Escalonamento de Pessoal
2.
Am J Physiol Endocrinol Metab ; 304(8): E853-62, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23462817

RESUMO

The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and ß-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.


Assuntos
Alopurinol/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Animais , Inibidores Enzimáticos/farmacologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Masculino , Mitocôndrias/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenóis/metabolismo , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Esforço Físico/fisiologia , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Ácido Úrico/metabolismo , Xantina/metabolismo , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...