Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598634

RESUMO

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sequências Reguladoras de Ácido Nucleico , Regulação Neoplásica da Expressão Gênica
3.
Nat Commun ; 13(1): 7475, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463275

RESUMO

Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide clinical precision oncology. Here we develop Griffin, a framework for profiling nucleosome protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x coverage whole genome sequencing data. Griffin employs a GC correction procedure tailored to variable cfDNA fragment sizes, which generates a better representation of chromatin accessibility and improves the accuracy of cancer detection and tumor subtype classification. We demonstrate estrogen receptor subtyping from cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in 139 patients with at least 5% detectable circulating tumor DNA with an area under the receive operator characteristic curve (AUC) of 0.89 and validate performance in independent cohorts (AUC = 0.96). In summary, Griffin is a framework for accurate tumor subtyping and can be generalizable to other cancer types for precision oncology applications.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Nucleossomos/genética , Neoplasias/diagnóstico , Neoplasias/genética , Receptores de Estrogênio , Medicina de Precisão
4.
Clin Cancer Res ; 28(20): 4551-4564, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35920742

RESUMO

PURPOSE: The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN: We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS: Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS: LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Morte Celular , Inibidores Enzimáticos/uso terapêutico , Etoposídeo/uso terapêutico , Histona Desmetilases/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/patologia , Lisina/uso terapêutico , Camundongos , Platina/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/patologia , Microambiente Tumoral
5.
Semin Oncol ; 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35843737

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine neoplasm with poor survival outcomes and little change to treatment standards over decades. SCLC is associated with heavy tobacco exposure and a high rate of somatic mutations in tumor cells, leading to hope that immune checkpoint inhibitors would dramatically reshape the treatment landscape of SCLC. Instead, immune checkpoint inhibitors have led to real but modest gains in outcomes, with only a small minority of patients deriving more durable benefit. Furthermore, biomarkers of ICI efficacy that have succeeded in other tumor types have not been validated in SCLC. However, recent research advances have suggested that epigenetic heterogeneity and plasticity play especially key roles in SCLC biology. Leveraging this emerging perspective, a new slate of candidate biomarkers of immune checkpoint inhibitor benefit have been described, and the novel treatment strategies combining rational epigenetic perturbation with immune checkpoint inhibitors are being developed. Finally, other immunotherapy strategies targeting SCLC-specific mechanisms are being tested. Together, these developments may lead to a second generation of much more efficacious immunotherapies in SCLC.

6.
Genes Dev ; 34(17-18): 1210-1226, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820040

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by initial chemosensitivity followed by emergence of chemoresistant disease. To study roles for MYCN amplification in SCLC progression and chemoresistance, we developed a genetically engineered mouse model of MYCN-overexpressing SCLC. In treatment-naïve mice, MYCN overexpression promoted cell cycle progression, suppressed infiltration of cytotoxic T cells, and accelerated SCLC. MYCN overexpression also suppressed response to cisplatin-etoposide chemotherapy, with similar findings made upon MYCL overexpression. We extended these data to genetically perturb chemosensitive patient-derived xenograft (PDX) models of SCLC. In chemosensitive PDX models, overexpression of either MYCN or MYCL also conferred a switch to chemoresistance. To identify therapeutic strategies for MYCN-overexpressing SCLC, we performed a genome-scale CRISPR-Cas9 sgRNA screen. We identified the deubiquitinase USP7 as a MYCN-associated synthetic vulnerability. Pharmacological inhibition of USP7 resensitized chemoresistant MYCN-overexpressing PDX models to chemotherapy in vivo. Our findings show that MYCN overexpression drives SCLC chemoresistance and provide a therapeutic strategy to restore chemosensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética
7.
Cancer Cell ; 38(1): 97-114.e7, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32470392

RESUMO

Small cell lung cancer (SCLC) is a highly aggressive and lethal neoplasm. To identify candidate tumor suppressors we applied CRISPR/Cas9 gene inactivation screens to a cellular model of early-stage SCLC. Among the top hits was MAX, the obligate heterodimerization partner for MYC family proteins that is mutated in human SCLC. Max deletion increases growth and transformation in cells and dramatically accelerates SCLC progression in an Rb1/Trp53-deleted mouse model. In contrast, deletion of Max abrogates tumorigenesis in MYCL-overexpressing SCLC. Max deletion in SCLC resulted in derepression of metabolic genes involved in serine and one-carbon metabolism. By increasing serine biosynthesis, Max-deleted cells exhibit resistance to serine depletion. Thus, Max loss results in metabolic rewiring and context-specific tumor suppression.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Proteínas Supressoras de Tumor/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Células K562 , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Carcinoma de Pequenas Células do Pulmão/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Cancer Discov ; 9(5): 584-586, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31043412

RESUMO

Small cell lung cancer (SCLC) has demonstrated modest responses to immune-checkpoint blockade despite harboring a high mutational burden. In this issue, Sen and colleagues show remarkable synergy between inhibition of the DNA-damage response and the PD-1 axis, resulting in striking tumor regressions in SCLC mouse models.See related article by Sen et al., p. 646.


Assuntos
Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , DNA , Dano ao DNA , Camundongos , Linfócitos T
9.
J Immunother Cancer ; 6(1): 82, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170630

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are the treatment of choice for several cancers and can be associated with remarkable clinical benefit, but can also cause serious immune-related adverse events (irAEs). Management of rare and severe irAEs is challenged by an incomplete knowledge of their natural history and pathogenetic mechanisms. We report a case of fatal acute-onset gastro-intestinal (GI) hypomotility from myenteric plexus neuropathy following a single dose of ipilimumab plus nivolumab given for treatment of Merkel cell carcinoma (MCC). CASE PRESENTATION: A 66-year-old man with recurrent metastatic MCC involving several organs (liver, bones and disseminated retroperitoneal lymphadenopathy) developed profound pharyngeal dysphagia and ileus that started 7 days after receiving a single administration of combination immune checkpoint blockade consisting of nivolumab (3 mg/kg) and low-dose ipilimumab (1 mg/kg). A swallowing study showed oropharyngeal dysfunction and aspiration. Imaging studies were consistent with diffuse intestinal paresis. An extensive work-up did not reveal obvious causes of these symptoms, and enteric plexopathy was suspected. Empiric immune suppressive therapy was initiated urgently. Despite an escalating immunosuppressive regimen that included high dose steroids, tacrolimus and therapeutic plasma exchange, no improvement in GI motility was seen and the patient suffered repeated episodes of aspiration. Seven weeks after the onset of GI hypomotility, the patient succumbed to sepsis from intestinal perforations. At autopsy, histologic specimens obtained from the entire GI tract (pharynx to rectum) showed near complete loss of ganglion cells within the myenteric and submucosal plexuses. An associated inflammatory infiltrate was not seen, suggesting a 'burned out' phase of illness. C4d complement deposition was found at the ganglionic sites, suggesting antibody-mediated pathogenesis. Remarkably, at sites of previously suspected Merkel cell metastases, no residual viable Merkel cell carcinoma was identified. CONCLUSIONS: GI-tract paresis due to myenteric neuritis is a rarely reported toxicity of ICIs. Because the window of reversibility is likely to be very brief, quick and decisive interventions are warranted. Subtle functional and anatomic perturbations of the myenteric nervous system from the use of ICIs may be more prevalent than realized and should be suspected and addressed in both clinical and investigational settings.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma de Célula de Merkel/tratamento farmacológico , Pseudo-Obstrução Intestinal/induzido quimicamente , Ipilimumab/efeitos adversos , Nivolumabe/efeitos adversos , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Evolução Fatal , Humanos , Masculino , Plexo Mientérico
10.
Brain ; 138(Pt 6): 1613-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25722288

RESUMO

Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.


Assuntos
Encéfalo/anormalidades , Hemimegalencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Adolescente , Encéfalo/metabolismo , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Predisposição Genética para Doença/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patologia , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Megalencefalia/metabolismo , Megalencefalia/patologia , Mutação , Neuroimagem , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo
11.
Genome Biol ; 15(12): 530, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25608559

RESUMO

BACKGROUND: The extent of intratumoral mutational heterogeneity remains unclear in gliomas, the most common primary brain tumors, especially with respect to point mutation. To address this, we applied single molecule molecular inversion probes targeting 33 cancer genes to assay both point mutations and gene amplifications within spatially distinct regions of 14 glial tumors. RESULTS: We find evidence of regional mutational heterogeneity in multiple tumors, including mutations in TP53 and RB1 in an anaplastic oligodendroglioma and amplifications in PDGFRA and KIT in two glioblastomas (GBMs). Immunohistochemistry confirms heterogeneity of TP53 mutation and PDGFRA amplification. In all, 3 out of 14 glial tumors surveyed have evidence for heterogeneity for clinically relevant mutations. CONCLUSIONS: Our results underscore the need to sample multiple regions in GBM and other glial tumors when devising personalized treatments based on genomic information, and furthermore demonstrate the importance of measuring both point mutation and copy number alteration while investigating genetic heterogeneity within cancer samples.


Assuntos
Neoplasias Encefálicas/genética , Heterogeneidade Genética , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oligodendroglioma/genética , Neoplasias Encefálicas/patologia , Amplificação de Genes , Glioblastoma/patologia , Humanos , Dados de Sequência Molecular , Oligodendroglioma/patologia , Mutação Puntual , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Salivares Ricas em Prolina/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética
12.
Nature ; 500(7461): 207-11, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925245

RESUMO

The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.


Assuntos
Epigenômica , Genoma Humano/genética , Aneuploidia , Variações do Número de Cópias de DNA , Feminino , Genes myc/genética , Haplótipos , Células HeLa , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/fisiologia , Humanos , Dados de Sequência Molecular , Mutação , Proto-Oncogene Mas , Análise de Sequência de DNA , Ativação Transcricional/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
13.
Gigascience ; 2(1): 10, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23870653

RESUMO

BACKGROUND: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. RESULTS: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. CONCLUSIONS: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

14.
Dev Cell ; 25(1): 55-68, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23523075

RESUMO

X upregulation in mammals increases levels of expressed X-linked transcripts to compensate for autosomal biallelic expression. Here, we present molecular mechanisms that enhance X expression at transcriptional and posttranscriptional levels. Active mouse X-linked promoters are enriched in the initiation form of RNA polymerase II (PolII-S5p) and in specific histone marks, including histone H4 acetylated at lysine 16 (H4K16ac) and histone variant H2AZ. The H4K16 acetyltransferase males absent on the first (MOF), known to mediate the Drosophila X upregulation, is also enriched on the mammalian X. Depletion of MOF or male-specific lethal 1 (MSL1) in mouse ES cells causes a specific decrease in PolII-S5p and in expression of a subset of X-linked genes. Analyses of RNA half-life data sets show increased stability of mammalian X-linked transcripts. Both ancestral X-linked genes, defined as those conserved on chicken autosomes, and newly acquired X-linked genes are upregulated by similar mechanisms but to a different extent, suggesting that subsets of genes are distinctly regulated depending on their evolutionary history.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Mamíferos/genética , Estabilidade de RNA , Transcrição Gênica , Acetilação , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Ligados ao Cromossomo X , Meia-Vida , Histona Acetiltransferases/genética , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(14): E1263-72, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509263

RESUMO

Although ubiquitination plays a critical role in virtually all cellular processes, mechanistic details of ubiquitin (Ub) transfer are still being defined. To identify the molecular determinants within E3 ligases that modulate activity, we scored each member of a library of nearly 100,000 protein variants of the murine ubiquitination factor E4B (Ube4b) U-box domain for auto-ubiquitination activity in the presence of the E2 UbcH5c. This assay identified mutations that enhance activity both in vitro and in cellular p53 degradation assays. The activity-enhancing mutations fall into two distinct mechanistic classes: One increases the U-box:E2-binding affinity, and the other allosterically stimulates the formation of catalytically active conformations of the E2∼Ub conjugate. The same mutations enhance E3 activity in the presence of another E2, Ube2w, implying a common allosteric mechanism, and therefore the general applicability of our observations to other E3s. A comparison of the E3 activity with the two different E2s identified an additional variant that exhibits E3:E2 specificity. Our results highlight the general utility of high-throughput mutagenesis in delineating the molecular basis of enzyme activity.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Modelos Moleculares , Mutagênese/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina/metabolismo , Regulação Alostérica/genética , Sequência de Aminoácidos , Animais , Western Blotting , Técnicas de Visualização da Superfície Celular , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oligonucleotídeos/genética , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/metabolismo
16.
Genome Res ; 23(5): 843-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23382536

RESUMO

The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.


Assuntos
Sondas de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Taxa de Mutação , Mutação , Linhagem Celular Tumoral , Células/citologia , Inversão Cromossômica/genética , Humanos , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos
17.
Mol Cell ; 48(5): 760-70, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23142080

RESUMO

MicroRNAs (miRNAs) are essential components of gene regulation, but identification of miRNA targets remains a major challenge. Most target prediction and discovery relies on perfect complementarity of the miRNA seed to the 3' untranslated region (UTR). However, it is unclear to what extent miRNAs target sites without seed matches. Here, we performed a transcriptome-wide identification of the endogenous targets of a single miRNA-miR-155-in a genetically controlled manner. We found that approximately 40% of miR-155-dependent Argonaute binding occurs at sites without perfect seed matches. The majority of these noncanonical sites feature extensive complementarity to the miRNA seed with one mismatch. These noncanonical sites confer regulation of gene expression, albeit less potently than canonical sites. Thus, noncanonical miRNA binding sites are widespread, often contain seed-like motifs, and can regulate gene expression, generating a continuum of targeting and regulation.


Assuntos
MicroRNAs/metabolismo , Transcriptoma , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Biologia Computacional , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Genes Reporter , Células HEK293 , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , MicroRNAs/genética , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Transfecção
18.
Science ; 338(6114): 1619-22, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23160955

RESUMO

Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de novo mutations but few recurrently disrupted genes. We therefore developed a modified molecular inversion probe method enabling ultra-low-cost candidate gene resequencing in very large cohorts. To demonstrate the power of this approach, we captured and sequenced 44 candidate genes in 2446 ASD probands. We discovered 27 de novo events in 16 genes, 59% of which are predicted to truncate proteins or disrupt splicing. We estimate that recurrent disruptive mutations in six genes-CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and TBL1XR1-may contribute to 1% of sporadic ASDs. Our data support associations between specific genes and reciprocal subphenotypes (CHD8-macrocephaly and DYRK1A-microcephaly) and replicate the importance of a ß-catenin-chromatin-remodeling network to ASD etiology.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Estudos de Associação Genética , Mutação , Análise de Sequência de DNA/métodos , Cefalometria , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina , Estudos de Coortes , Sondas de DNA , Proteínas de Ligação a DNA/genética , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Megalencefalia/genética , Microcefalia/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de N-Metil-D-Aspartato/genética , Proteínas Repressoras/genética , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , beta Catenina/genética , beta Catenina/metabolismo , Quinases Dyrk
19.
Proc Natl Acad Sci U S A ; 109(46): 18749-54, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112150

RESUMO

The relatively short read lengths associated with the most cost-effective DNA sequencing technologies have limited their use in de novo genome assembly, structural variation detection, and haplotype-resolved genome sequencing. Consequently, there is a strong need for methods that capture various scales of contiguity information at a throughput commensurate with the current scale of massively parallel sequencing. We propose in situ library construction and optical sequencing on the flow cells of currently available massively parallel sequencing platforms as an efficient means of capturing both contiguity information and primary sequence with a single technology. In this proof-of-concept study, we demonstrate basic feasibility by generating >30,000 Escherichia coli paired-end reads separated by 1, 2, or 3 kb using in situ library construction on standard Illumina flow cells. We also show that it is possible to stretch single molecules ranging from 3 to 8 kb on the surface of a flow cell before in situ library construction, thereby enabling the production of clusters whose physical relationship to one another on the flow cell is related to genomic distance.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano , Biblioteca Genômica , Análise de Sequência de DNA/métodos
20.
Proc Natl Acad Sci U S A ; 109(36): 14508-13, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22853953

RESUMO

Next-generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of ~1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when "deep sequencing" genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, we have developed a method termed Duplex Sequencing. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors result in mutations in only one strand and can thus be discounted as technical error. We determine that Duplex Sequencing has a theoretical background error rate of less than one artifactual mutation per billion nucleotides sequenced. In addition, we establish that detection of mutations present in only one of the two strands of duplex DNA can be used to identify sites of DNA damage. We apply the method to directly assess the frequency and pattern of random mutations in mitochondrial DNA from human cells.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma/genética , Mutação/genética , Neoplasias/genética , Projetos de Pesquisa/estatística & dados numéricos , Dano ao DNA/genética , Humanos , Oligonucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...