Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948859

RESUMO

Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.

2.
Nature ; 628(8008): 596-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509371

RESUMO

Motor neurons are the final common pathway1 through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically2 suppress a single class of proprioceptive neuron3 that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.


Assuntos
Drosophila melanogaster , Neurônios Motores , Movimento , Postura , Propriocepção , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Retroalimentação Fisiológica/fisiologia , Cabeça/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Movimento/fisiologia , Postura/fisiologia , Propriocepção/genética , Propriocepção/fisiologia , Masculino
3.
Proc Natl Acad Sci U S A ; 120(39): e2221415120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733736

RESUMO

Foraging animals must use decision-making strategies that dynamically adapt to the changing availability of rewards in the environment. A wide diversity of animals do this by distributing their choices in proportion to the rewards received from each option, Herrnstein's operant matching law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior, as operant matching follows automatically from simple synaptic plasticity rules acting within behaviorally relevant neural circuits. However, no past work has mapped operant matching onto plasticity mechanisms in the brain, leaving the biological relevance of the theory unclear. Here, we discovered operant matching in Drosophila and showed that it requires synaptic plasticity that acts in the mushroom body and incorporates the expectation of reward. We began by developing a dynamic foraging paradigm to measure choices from individual flies as they learn to associate odor cues with probabilistic rewards. We then built a model of the fly mushroom body to explain each fly's sequential choice behavior using a family of biologically realistic synaptic plasticity rules. As predicted by past theoretical work, we found that synaptic plasticity rules could explain fly matching behavior by incorporating stimulus expectations, reward expectations, or both. However, by optogenetically bypassing the representation of reward expectation, we abolished matching behavior and showed that the plasticity rule must specifically incorporate reward expectations. Altogether, these results reveal the first synapse-level mechanisms of operant matching and provide compelling evidence for the role of reward expectation signals in the fly brain.


Assuntos
Drosophila , Motivação , Animais , Aprendizagem , Encéfalo , Recompensa
4.
Elife ; 122023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721371

RESUMO

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.


Assuntos
Aprendizagem , Vento , Animais , Drosophila/fisiologia , Olfato/fisiologia , Neurônios/fisiologia , Corpos Pedunculados/fisiologia , Drosophila melanogaster/fisiologia
5.
Elife ; 122023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692262

RESUMO

Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.


Assuntos
Dopamina , Drosophila , Animais , Drosophila/fisiologia , Aprendizagem , Encéfalo , Odorantes , Neurônios Dopaminérgicos/fisiologia , Corpos Pedunculados/fisiologia , Drosophila melanogaster/fisiologia , Olfato/fisiologia
6.
J Undergrad Neurosci Educ ; 16(3): A289-A295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254546

RESUMO

Optogenetics is possibly the most revolutionary advance in neuroscience research techniques within the last decade. Here, we describe lab modules, presented at a workshop for undergraduate neuroscience educators, using optogenetic control of neurons in the fruit fly Drosophila melanogaster. Drosophila is a genetically accessible model system that combines behavioral and neurophysiological complexity, ease of use, and high research relevance. One lab module utilized two transgenic Drosophila strains, each activating specific circuits underlying startle behavior and backwards locomotion, respectively. The red-shifted channelrhodopsin, CsChrimson, was expressed in neurons sharing a common transcriptional profile, with the expression pattern further refined by the use of a Split GAL4 intersectional activation system. Another set of strains was used to investigate synaptic transmission at the larval neuromuscular junction. These expressed Channelrhodopsin 2 (ChR2) in glutamatergic neurons, including the motor neurons. The first strain expressed ChR2 in a wild type background, while the second contained the SNAP-25ts mutant allele, which confers heightened evoked potential amplitude and greatly increased spontaneous vesicle release frequency at the larval neuromuscular junction. These modules introduced educators and students to the use of optogenetic stimulation to control behavior and evoked release at a model synapse, and establish a basis for students to explore neurophysiology using this technique, through recapitulating classic experiments and conducting independent research.

7.
Genetics ; 209(1): 31-35, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29535151

RESUMO

The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2800 transgenic lines for use with the split-GAL4 intersectional method.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular , Cruzamentos Genéticos , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Expressão Gênica , Vetores Genéticos/genética , Genótipo , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transgenes
8.
J Neurogenet ; 26(2): 177-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22794106

RESUMO

The Dbp21E2 (DEAD box protein 21E2) is a member of a family of DEAD box helicases active in RNA processing and stability. The authors used genetic mosaics to identify mutants in Dbp21E2 that affect rhodopsin biogenesis and the maintenance of photoreceptor structure. Analysis of a green fluorescent protein (GFP)-tagged Rh1 rhodopsin construct placed under control of a heat shock promoter showed that Dbp21E21 fails to efficiently transport Rh1 from the photoreceptor cell body to the rhabdomere. Retinal degeneration is not dependent on the Rh1 transport defects. The authors also showed that GFP- and red fluorescent protein (RFP)-tagged Dbp21E2 proteins are localized to discrete cytoplasmic structures that are not associated with organelles known to be active in rhodopsin transport. The molecular genetic analysis described here reveals an unexpected role for the Dbp21E2 helicase and provides an experimental system to further characterize its function.


Assuntos
RNA Helicases DEAD-box/genética , Mutação/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Rodopsina/genética , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Eletrorretinografia , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutagênese/fisiologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Transporte Proteico/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismo
9.
Genetics ; 186(2): 735-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20697123

RESUMO

A wide variety of biological experiments rely on the ability to express an exogenous gene in a transgenic animal at a defined level and in a spatially and temporally controlled pattern. We describe major improvements of the methods available for achieving this objective in Drosophila melanogaster. We have systematically varied core promoters, UTRs, operator sequences, and transcriptional activating domains used to direct gene expression with the GAL4, LexA, and Split GAL4 transcription factors and the GAL80 transcriptional repressor. The use of site-specific integration allowed us to make quantitative comparisons between different constructs inserted at the same genomic location. We also characterized a set of PhiC31 integration sites for their ability to support transgene expression of both drivers and responders in the nervous system. The increased strength and reliability of these optimized reagents overcome many of the previous limitations of these methods and will facilitate genetic manipulations of greater complexity and sophistication.


Assuntos
Drosophila melanogaster/genética , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Expressão Gênica , Genes Reporter , Engenharia Genética , Marcadores Genéticos , Técnicas Genéticas , Vetores Genéticos , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...