Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315113

RESUMO

The study of exogenous and endogenous nanoscale magnetic material in biology is important for developing biomedical nanotechnology as well as for understanding fundamental biological processes such as iron metabolism and biomineralization. Here, we exploit the magneto-optical Faraday effect to probe intracellular magnetic properties and perform magnetic imaging, revealing the location-specific magnetization dynamics of exogenous magnetic nanoparticles within cells. The opportunities enabled by this method are shown in the context of magnetic hyperthermia; an effect where local heating is generated in magnetic nanoparticles exposed to high-frequency AC magnetic fields. Magnetic hyperthermia has the potential to be used as a cellular-level thermotherapy for cancer, as well as for other biomedical applications that target heat-sensitive cellular function. However, previous experiments have suggested that the cellular environment modifies the magnetization dynamics of nanoparticles, thus dramatically altering their heating efficiency. By combining magneto-optical and fluorescence measurements, we demonstrate a form of biological microscopy that we used here to study the magnetization dynamics of nanoparticles in situ, in both histological samples and living cancer cells. Correlative magnetic and fluorescence imaging identified aggregated magnetic nanoparticles colocalized with cellular lysosomes. Nanoparticles aggregated within these lysosomes displayed reduced AC magnetic coercivity compared to the same particles measured in an aqueous suspension or aggregated in other areas of the cells. Such measurements reveal the power of this approach, enabling investigations of how cellular location, nanoparticle aggregation, and interparticle magnetic interactions affect the magnetization dynamics and consequently the heating response of nanoparticles in the biological milieu.

2.
Nat Commun ; 14(1): 1378, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914683

RESUMO

Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. However, little is known about the interplay between light and spin properties in vdW layers. Here we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3 vdW magnets but also induce a reversible transformation between them in a topological toggle switch mechanism. Our atomistic spin dynamics simulations and wide-field Kerr microscopy measurements show that different textures can be generated via high-intense laser pulses within the picosecond regime. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards reconfigurable topological architectures at the atomistic level.

3.
Nat Commun ; 13(1): 5976, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216796

RESUMO

Two-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets. Here we demonstrate laser-induced magnetic domain formation and all-optical switching in the recently discovered 2D van der Waals ferromagnet CrI3. While the magnetism of bare CrI3 layers can be manipulated with single laser pulses through thermal demagnetization processes, all-optical switching is achieved in nanostructures that combine ultrathin CrI3 with a monolayer of WSe2. The out-of-plane magnetization is switched with multiple femtosecond pulses of either circular or linear polarization, while single pulses result in less reproducible and partial switching. Our results imply that spin-dependent interfacial charge transfer between the WSe2 and CrI3 is the underpinning mechanism for the switching, paving the way towards ultrafast optical control of 2D van der Waals magnets for future photomagnetic recording and device technology.

4.
Nano Lett ; 21(21): 9210-9216, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699234

RESUMO

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.

5.
ACS Appl Mater Interfaces ; 12(46): 52116-52124, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156990

RESUMO

Microwave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.

6.
Phys Rev Lett ; 124(21): 217201, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530697

RESUMO

Insulating antiferromagnets have recently emerged as efficient and robust conductors of spin current. Element-specific and phase-resolved x-ray ferromagnetic resonance has been used to probe the injection and transmission of ac spin current through thin epitaxial NiO(001) layers. The spin current is found to be mediated by coherent evanescent spin waves of GHz frequency, rather than propagating magnons of THz frequency, paving the way towards coherent control of the phase and amplitude of spin currents within an antiferromagnetic insulator at room temperature.

7.
Rev Sci Instrum ; 88(12): 123708, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289235

RESUMO

Time-resolved scanning Kerr microscopy (TRSKM) is a powerful technique for the investigation of picosecond magnetization dynamics at sub-micron length scales by means of the magneto-optical Kerr effect (MOKE). The spatial resolution of conventional (focused) Kerr microscopy using a microscope objective lens is determined by the optical diffraction limit so that the nanoscale character of the magnetization dynamics is lost. Here we present a platform to overcome this limitation by means of a near-field TRSKM that incorporates an atomic force microscope (AFM) with optical access to a metallic AFM probe with a nanoscale aperture at its tip. We demonstrate the near-field capability of the instrument through the comparison of time-resolved polar Kerr images of magnetization dynamics within a microscale NiFe rectangle acquired using both near-field and focused TRSKM techniques at a wavelength of 800 nm. The flux-closure domain state of the in-plane equilibrium magnetization provided the maximum possible dynamic polar Kerr contrast across the central domain wall and enabled an assessment of the magneto-optical spatial resolution of each technique. Line profiles extracted from the Kerr images demonstrate that the near-field spatial resolution was enhanced with respect to that of the focused Kerr images. Furthermore, the near-field polar Kerr signal (∼1 mdeg) was more than half that of the focused Kerr signal, despite the potential loss of probe light due to internal reflections within the AFM tip. We have confirmed the near-field operation by exploring the influence of the tip-sample separation and have determined the spatial resolution to be ∼550 nm for an aperture with a sub-wavelength diameter of 400 nm. The spatial resolution of the near-field TRSKM was in good agreement with finite element modeling of the aperture. Large amplitude electric field along regions of the modeled aperture that lie perpendicular to the incident polarization indicate that the aperture can support plasmonic excitations. The comparable near-field and focused polar Kerr signals suggest that such plasmonic excitations may lead to an enhanced near-field MOKE. This work demonstrates that near-field TRSKM can be performed without significant diminution of the polar Kerr signal in relatively large, sub-wavelength diameter apertures, while development of a near-field AFM probe utilizing plasmonic antennas specifically designed for measurements deeper into the nanoscale is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...