Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Dairy Res ; 84(1): 68-75, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27691991

RESUMO

Uncoupling protein-1 (UCP1) plays a role in the regulation of body temperature, metabolic rate and energy expenditure in animals. While variation in UCP1 and its phenotypic effect has been investigated in humans and sheep, little is known about this gene in cattle. In this study, four regions of bovine UCP1 were investigated in 612 Holstein-Friesian × Jersey (HF × J) dairy cows using polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analyses. In the four regions of the gene analysed, a total of 13 SNPs were detected. Three sequences (a, b and c) were found in Region-2 and three sequences (A, B and C) were found in Region-4, and these were assembled into three (a-B, b-B and c-A) common and three (b-C, c-B and c-C) rare haplotypes. Of the three common haplotypes, b-B and c-A were associated (P < 0·007 and P < 0·043, respectively) with increased milk yield and tended to be associated (P < 0·085 and P < 0·070, respectively) with decreased fat percentage. Cows with genotype b-B/a-B produced more milk (P < 0·004), but with a lower percentage of fat (P < 0·035) and protein (P < 0·038) than cows with genotype a-B/a-B. Cows of genotype a-B/c-A had milk of low fat percentage (P < 0·017), but tended to produce more milk (P < 0·059) than cows of genotype a-B/a-B. This suggests that UCP1 affects milk yield, milk fat percentage and milk protein percentage.


Assuntos
Bovinos/genética , Haplótipos/genética , Lactação/genética , Leite/química , Proteína Desacopladora 1/genética , Animais , Antígenos CD36/análise , Indústria de Laticínios , Feminino , Variação Genética , Genótipo , Proteínas do Leite/análise , Reação em Cadeia da Polimerase/veterinária , Polimorfismo Conformacional de Fita Simples/genética , Análise de Sequência de DNA/veterinária
2.
Springerplus ; 3: 528, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279319

RESUMO

The keratin-associated proteins (KAPs) are fundamental components of hair and wool fibres, and are believed to in part be responsible for some of the properties of these fibres. KAPs can be divided into three groups: the high sulphur (HS) KAPs, the ultra-high sulphur (UHS) KAPs and the high glycine-tyrosine (HGT) KAPs. KAP8 is a HGT-KAP family and was believed to be coded for by a single gene in both humans and sheep. However, the recent identification of a KAP8-2 gene in goats led us to investigate whether a KAP8-2 gene exists in sheep. A BLAST search of the Ovine Genome Assembly v2.0 using the coding sequence of caprine KRTAP8-2 identified a homologous region on sheep chromosome 1 (OAR1:123005473_123005664; E = e(-101)). This region was clustered with a number of previously identified KAP genes including (in order from the centromere) KRTAP11-1, KRTAP7-1, KRTAP8-1, KRTAP6-2, KRTAP6-1, KRTAP13-3 and KRTAP24-1. PCR-SSCP analysis of the notional gene revealed two dissimilar PCR-SSCP banding patterns, representing two DNA sequences. A single nucleotide difference 21 bp upstream of the TATA box was identified. The two sequences did not have great homology with known ovine KRTAP sequences, but high sequence identity was found with KRTAP8-2 from goats and reindeer. These results suggest that sheep possess a KAP8-2 gene and that this gene is polymorphic. The notional KAP8-2 protein is comprised of 63 amino acid residues and is rich in glycine and tyrosine, but has a low cysteine content. In contrast to other HGT-KAPs, ovine KAP8-2 contains more acidic amino acid residues, and this would likely result in a lower isoelectric point (pI) of 6.3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...