Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 148(7): 074105, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471636

RESUMO

Recent quantum calculations of rotationally inelastic collisions of NaK (A1Σ+) with He or Ar in a cell experiment are analyzed using semiclassical approximations valid for large quantum numbers. The results suggest a physical interpretation of jm → j'm' transitions based on the vector model and lead to expressions that explicitly involve the initial and final polar angles of the angular momentum of the target molecule. The relation between the polar angle θ and the azimuthal quantum number m links the semiclassical results for the change in polar angle (θ → θ') to quantum results for an m → m' transition. Analytic formulas are derived that relate the location and width of peaks in the final polar angle distribution (PAD) to the K-dependence of the coefficients dK(j, j'), which are proportional to tensor cross sections σK(j → j'). Several special cases are treated that lead to final PADs that are approximately Lorentzian or sinc functions centered at θ' = θ. Another interesting case, "angular momentum reversal," was observed in the calculations for He. This phenomenon, which involves a reversal of the direction of the target's angular momentum, is shown to be associated with oscillatory behavior of the dK for certain transitions. Finally, several strategies for obtaining the dK coefficients from experimental data are discussed.

2.
J Chem Phys ; 147(14): 144303, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29031279

RESUMO

We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.

3.
J Chem Phys ; 146(20): 204109, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571387

RESUMO

A quantitative theoretical study of the dissociative recombination of SH+ with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH+ and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

4.
J Chem Phys ; 142(22): 224301, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071704

RESUMO

We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A(1)Σ(+)) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B(λ)(j, j') for each j → j' transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j' between 0 and 50, and total (translational and rotational) energies in the range 0.0002-0.0025 a.u. (∼44-550 cm(-1)). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j'. Finally, we compare the exact quantum results for j → j' transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

5.
J Chem Phys ; 136(11): 114313, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22443770

RESUMO

We report high resolution measurements of 372 NaCs 5(3)Π(0)(v, J) ro-vibrational level energies in the range 0 ≤ v ≤ 22. The data have been used to construct NaCs 5(3)Π(0) potential energy curves using the Rydberg-Klein-Rees and inverted perturbation approximation methods. Bound-free 5(3)Π(0)(v, J) → 1(a)(3)Σ(+) emission has also been measured, and is used to determine the repulsive wall of the 1(a)(3)Σ(+) state and the 5(3)Π(0) → 1(a)(3)Σ(+) relative transition dipole moment function. Hyperfine structure in the 5(3)Π(0) state has not been observed in this experiment. This null result is explained using a simple vector coupling model.

6.
J Chem Phys ; 125(15): 154304, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17059252

RESUMO

The excited 3 (3)Pi and 4 (3)Pi electronic states of the NaK molecule exhibit an avoided crossing, leading to the anomalous behavior of many features of the rovibrational energy levels belonging to each state. A joint experimental and theoretical investigation of these states has been carried out. Experimental measurements of the vibrational, rotational, and hyperfine structure of numerous levels of the 3 (3)Pi state were recently obtained using the Doppler-free, perturbation-facilitated optical-optical double resonance technique. Additional measurements for the 4 (3)Pi state as well as bound-free emission spectra from selected 3 (3)Pi, 4 (3)Pi, and mixed 3 (3)Pi to approximately 4 (3)Pi rovibrational levels are reported here. A model is also presented for calculating the mixed rovibrational level energies of the coupled 3 (3)Pi-4 (3)Pi system, starting from a 2x2 diabatic electronic Hamiltonian. The 3 (3)Pi and 4 (3)Pi potential curves and the coupling between them are simultaneously adjusted to fit the observed rovibrational levels of both states. The energy levels of the potential curves determined by the fit are in excellent agreement with experiment. The nonadiabatic coupling is sufficiently strong to cause an overall shift of 2-3 cm(-1) for many rovibrational levels as well as somewhat larger shifts for certain pairs of 3 (3)Pi to approximately 4 (3)Pi levels that would otherwise be very close together.

7.
J Chem Phys ; 122(14): 144313, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15847528

RESUMO

We have used the Doppler-free, perturbation-facilitated optical-optical double-resonance technique to investigate the vibrational, rotational, and hyperfine structure of the 3 (3)Pi double minimum state of NaK. Since this electronic state arises from an avoided crossing with the nearby 4 (3)Pi state, we observe striking patterns in the data that provide a sensitive probe of the electronic wave function in the various regions of the double well potential. A single-mode cw dye laser excites 2(A) (1)Sigma(+)(v(A),J) approximately 1(b) (3)Pi(Omega=0)(v(b),J) mixed singlet-triplet "window" levels from thermally populated rovibrational ground state levels, 1(X) (1)Sigma(+)(v(X),J+/-1). Further excitation by a single-mode cw Ti:sapphire laser selects various 3 (3)Pi(0)(v(Pi),J(Pi)) rovibrational levels, which are detected by observing direct 3 (3)Pi(0)-->1(a) (3)Sigma(+) fluorescence in the green spectral region. Using the inverse perturbation approximation method, we have determined a 3 (3)Pi(0) potential curve that reproduces the measured energies to approximately 0.24 cm(-1). In addition, the hyperfine and spin-orbit constants, b(F) and A(v), have been determined for each region of the potential curve.

8.
J Chem Phys ; 122(7): 074306, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15743231

RESUMO

We have measured the hyperfine structure of mutually perturbing rovibrational levels of the 1(b) 3Pi0 and 2(A) 1Sigma+ states of the NaK molecule, using the perturbation-facilitated optical-optical double resonance method with copropagating lasers. The unperturbed 1(b) 3Pi0 levels are split into four hyperfine components by the Fermi contact interaction bFIS. Mixing between the 1(b) 3Pi0 and 2(A) 1Sigma+ levels imparts hyperfine structure to the nominally singlet component of the perturbed levels and reduces the hyperfine splitting of the nominally triplet component. Theoretical analysis relates these observations to the hyperfine splitting that each 1(b) 3Pi0 level would have if it were not perturbed by a 2(A) 1Sigma+ level. Using this analysis, we demonstrate that significant hyperfine splitting arises because the 1(b) 3Pi0 state cannot be described as pure Hund's case (a). We determine bF for the 1(b) 3Pi0 levels and also a more accurate value for the magnitude of the singlet-triplet spin-orbit coupling HSO=[1(b) 3Pi0(vb,J)(H(SO))2(A) 1Sigma+(vA,J). Using the known spectroscopic constants of the 1(b) 3Pi state, we obtain bF=0.009 89+/-0.000 27 cm(-1). The values of (H(SO)) are found to be between 2 and 3 cm(-1), depending on vb, vA, and J. Dividing (H(SO)) by calculated vibrational overlap integrals, and taking account of the 1(b) 3Pi(Omega) rotational mixing, we can determine the magnitude of the electronic part H(el) of H(SO). Our results yield (H(el))=(16.33+/-0.15) cm(-1), consistent with our previous determinations using different techniques.

9.
J Chem Phys ; 123(12): 124306, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16392481

RESUMO

Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

10.
Opt Lett ; 17(15): 1049-51, 1992 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794715

RESUMO

We present a detailed comparison of theory and experiment for transient stimulated Brillouin scattering for a pump pulse with Gaussian temporal profile. A new approach for measuring Brillouin linewidths is demon-strated, and an unexplained asymmetry is observed.

11.
Opt Lett ; 15(12): 703-5, 1990 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19768053

RESUMO

We report what is to our knowledge the first high-resolution Brillouin gain spectrum in a solid. Resonances corresponding to longitudinal (compressional) and transverse (shear) acoustic waves in fused silica are observed with good resolution and a high signal-to-noise ratio. Absolute gain coefficients, linewidths, and Brillouin frequency shifts are measured. The agreement with previously measured values is good.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...