Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 294(5544): 1089-91, 2001 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11691989

RESUMO

A high-dispersion spectrum of Comet C/1999S4 (LINEAR) was obtained in the optical region with the high-dispersion spectrograph on the Subaru telescope when the comet was 0.863 astronomical units from the Sun before its disintegration. We obtained high signal-to-noise ratio emission lines of the cometary NH2 bands from which an ortho-to-para ratio (OPR) of 3.33 +/- 0.07 was derived on the basis of a fluorescence excitation model. Assuming that cometary NH2 mainly originates from ammonia through photodissociation, the derived OPR of NH2 molecules should reflect that of ammonia, which provides information on the environment of molecular formation or condensation and of the thermal history of cometary ices. Assuming that the OPR of ammonia in comets was unchanged in the nucleus, the derived spin temperature of ammonia (28 +/- 2 kelvin) suggests that a formation region of the cometary ammonia ice was between the orbit of Saturn and that of Uranus in the solar nebula.


Assuntos
Amônia , Meteoroides , Gelo , Análise Espectral , Temperatura
2.
Carbohydr Res ; 333(4): 303-12, 2001 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-11454337

RESUMO

Epimerization of aldoses at C-2 has been extensively investigated by using various metal ions in conjunction with diamines, monoamines, and aminoalcohols. Aldoses are epimerized at C-2 by a combination of alkaline-earth or rare-earth metal ions (Ca(2+), Sr(2+), Pr(3+), or Ce(3+)) and such monoamines as triethylamine. In particular, the Ca(2+)-triethylamine system proved effective in promoting aldose-ketose isomerization as well as C-2 epimerization of aldoses. 13C NMR studies using D-(1-(13)C)glucose and D-(1-(13)C)galactose with the CaCl(2) system in CD(3)OD revealed that the C-2 epimerization proceeds via stereospecific rearrangement of the carbon skeleton, or 1,2-carbon shift, and ketose formation proceeds partially through an intramolecular hydrogen migration or 1,2-hydride shift and, in part, via an enediol intermediate. These simultaneous aldose-aldose and aldose-ketose isomerizations showed interesting substrate-dependent chemoselectivity. Whereas the mannose-type aldoses having 2,3-erythro configuration (D-mannose, D-lyxose, and D-ribose) showed considerable resistance to both the C-2 epimerization and the aldose-ketose isomerization, the glucose-type sugars having 2,3-threo and 3,4-threo configurations, D-glucose and D-xylose, are mainly epimerized at C-2 and those having the 2,3-threo and 3,4-erythro configurations, D-galactose and D-arabinose, were mostly isomerized into 2-ketoses. These features are of potential interest in relevance to biomimic sugar transformations by metal ions.


Assuntos
Aldose-Cetose Isomerases/química , Aminas/farmacologia , Cálcio/farmacologia , Carboidratos/química , Etilaminas/farmacologia , Isomerismo , Metais Pesados/farmacologia , Mimetismo Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos Organometálicos/farmacologia , Especificidade por Substrato
5.
Inorg Chem ; 40(9): 2034-40, 2001 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11304147

RESUMO

Treatment of the hydrosulfido-bridged titanium-ruthenium heterobimetallic complex [Cp2Ti(mu2-SH)2RuCl(eta5-C5Me5)] (1; Cp = eta5-C5H5) with an excess of triethylamine followed by addition of [RuCl2(PPh3)3] and [[(cod)M]2(mu2-Cl)2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) led to the formation of the TiRu2 and TiRuM mixed-metal sulfido clusters [(CpTi)[(eta5-C5Me5)Ru][Ru(PPh3)2](mu3-S)2(mu2-Cl)2] (3) and [(CpTi)[(eta5-C5Me5)Ru][M(cod)](mu3-S)2(mu2-Cl)] (M = Rh (4a), Ir (4b)), respectively. On the other hand, the reactions of 1 with [M(PPh3)4] (M = Pd, Pt) afforded the TiRuM trinuclear clusters [(CpTiCl)[(eta5-C5Me5)Ru][M(PPh3)2](mu3-S)(mu2-S)(mu2-H)] (M = Pd (5a), Pt (5b)) with an unprecedented M3(mu3-S)(mu2-S) core. The detailed structures of these triangular clusters 3-5 have been determined by X-ray crystallography. Crystal data: 3, triclinic, P1, a = 12.448(4) A, b = 12.773(4) A, c = 17.270(4) A, alpha = 100.16(2) degrees, beta = 99.93(2) degrees, gamma = 114.11(3) degrees, V = 2373(1) A(3), Z = 2; 4a, triclinic, P1, a = 7.714(2) A, b = 11.598(3) A, c = 14.802(4) A, alpha = 80.46(2) degrees, beta = 82.53(2) degrees, gamma = 71.47(2) degrees, V = 1234.0(6) A3, Z = 2; 4b, triclinic, P1, a = 7.729(1) A, b = 11.577(2) A, c = 14.766(3) A, alpha = 80.14(1) degrees, beta = 82.71(1) degrees, gamma = 71.55(1) degrees, V = 1231.1(4) A3, Z = 2; 5a, monoclinic, P2(1)/c, a = 11.259(4) A, b = 16.438(4) A, c = 26.092(5) A, beta = 102.23(3) degrees, V = 4719(2) A(3), Z = 4; 5b, monoclinic, P2(1)/n, a = 11.369(2) A, b = 16.207(3) A, c = 26.116(2) A, beta = 102.29(1) degrees, V = 4701(1) A3, Z = 4.

6.
Inorg Chem ; 40(7): 1677-82, 2001 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-11261979

RESUMO

Treatment of [Et4N][(Me2Tp)W(CO)3] (Me2Tp = HB(3,5-dimethylpyrazol-1-yl)3) with S8 in DMF at room temperature afforded a tris(sulfido) complex [Et4N][(Me2Tp)WS3] (1a), while that of [Et4N][TpW(CO)3] (Tp = HB(pyrazol-1-yl)3) in MeCN resulted in the formation of [Et4N][TpWS3] (1b) along with [Et4N]2[[WO(S2)2]2(mu-S)] (6) as a byproduct. Under similar conditions, [Et4N][(Me2Tp)Mo(CO)3] gave a mixture of a sulfido-tetrasulfido complex [Et4N][(Me2Tp)MoS(S4)] (2a) and its monooxo analogue [Et4N][(Me2Tp)MoO(S4)], although a sulfido-tetrasulfido complex [Et4N][TpMoS(S4)] (2b) was exclusively obtained from [Et4N][TpMo(CO)3]. The reaction of 1a with [PtCl2(cod)] (cod = 1,5-cyclooctadiene) in MeCN at room temperature led to the formation of a sulfido-bridged mixed-metal complex [Et4N][(Me2Tp)WS(mu-S)2PtCl2] (10). The structures of new complexes have been determined in detail by the X-ray analyses for 1a.MeCN, 1b, 2a, 2b, 6, and 10.

8.
Chem Rec ; 1(5): 349-61, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11933242

RESUMO

A zero-valent [M(Ph(2)PCH(2)CH(2)PPh(2))(2)] moiety (M = Mo, W) generated in situ by dissociation of the N(2) ligands in trans-[M(N(2))(2)(Ph(2)PCH(2)CH(2)PPh(2))(2)] can activate pi-accepting organic molecules including isocyanides and nitriles, which undergo the electrophilic attack caused by a strong pi-donation from a zero-valent metal center. Cleavage of a variety of C-X bonds (X = H, C, N, O, P, halogen) also occurs at their electron-rich sites through oxidative addition to form reactive intermediates, which subsequently degradate to yield smaller molecules either bound to or dissociated from the metal center. The mechanism is substantiated unambiguously by isolation of numerous intermediate stages.

9.
Chem Commun (Camb) ; (22): 2360-1, 2001 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12240075

RESUMO

Chiral ruthenium(II) complexes, RuCl2(PPh3)(oxazolinylferrocenylphosphine), have been found to be effective catalysts for asymmetric hydrosilylation of ketoximes to give the corresponding primary amines in good yields with high enantioselectivities (up to 89% ee) after acid hydrolysis.


Assuntos
Aminas/síntese química , Oximas/química , Rutênio/química , Catálise , Fosfinas/química , Estereoisomerismo
12.
Acc Chem Res ; 33(1): 46-52, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10639075

RESUMO

Cubane-type sulfido clusters containing noble metals are newcomers compared with the corresponding clusters of the first transition series metals and molybdenum, which have been extensively studied in relation to metalloenzymes and industrial hydrodesulfurization catalysts. This Account reviews the recent progress in studies on the synthesis and reactivities of these noble metal cubane-type clusters. One of the goals in this new area lies in development of the unique catalysis of the noble metals embedded in the robust and redox-active cubane-type cores. Rational synthetic approaches indispensable to the preparation of such effective cluster catalysts are discussed to a significant extent.


Assuntos
Metais/química , Sulfetos/síntese química , Dimerização , Estrutura Molecular , Sulfetos/química
13.
Inorg Chem ; 39(26): 5946-57, 2000 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11151496

RESUMO

Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.

14.
Inorg Chem ; 39(4): 791-8, 2000 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-11272578

RESUMO

Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.

16.
Inorg Chem ; 39(22): 5095-101, 2000 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11233207

RESUMO

A single crystal of the title compound [MnII6(H2O)9[W(V)(CN)8]4 x 13H2O]n was synthesized in a hot aqueous solution containing octacyanotungstate, Na3[W(CN)8] x 3H2O, and Mn(ClO4)2 x 6H2O. The compound crystallized in the monoclinic system, space group P2(1)/c with cell constants a = 15.438(2) A, b = 14.691(2) A, c = 33.046(2) A, beta = 94.832(9) degrees, and Z = 4. The crystal consists of a W(V)-CN-MnII linked three-dimensional network [[MnII(H2O)]3[MnII(H2O)2]3[W(V)(CN)8]4]n and H2O molecules as crystal solvates. There are two kinds of W sites: one is close to a dodecahedron geometry with six bridging and two terminal CN ligands; the other is close to a bicapped trigonal prism with seven bridging and one terminal CN ligands. The field-cooled magnetization measurement showed that the compound exhibits a spontaneous magnetization below Tc = 54 K. Further magnetization measurements on the field dependence reveal it to be a ferrimagnet where all of the MnII ions are antiparallel to all the W(V) ions.

17.
Angew Chem Int Ed Engl ; 38(20): 3047-3050, 1999 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-10540417

RESUMO

The heterolytic cleavage of H(2) is the key to the novel catalytic hydrogenolysis of trimethylsilyl enol ethers catalyzed by [RuCl(eta(2)-H(2))(dppe)(2)]OTf (dppe = 1,2-bis(diphenylphosphanyl)ethane, OTf = trifluoromethanesulfonate), which results in the formation of a ketone and Me(3)SiH (see scheme). In addition, the stoichiometric, ruthenium-assisted protonation of a prochiral lithium enolate with H(2) gave a chiral ketone with high enantioselectivity (up to 75 % ee).

18.
Science ; 279(5350): 540-2, 1998 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-9438842

RESUMO

Treatment of the tungsten dinitrogen complex cis-[W(N2)2(PMe2Ph)4] (Me = methyl, Ph = phenyl) with an equilibrium mixture of [RuCl(dppp)2]X and trans-[RuCl(eta2-H2)(dppp)2]X [X = BF4, PF6, or OSO2CF3; dppp = 1,3-bis(diphenylphosphino)propane] under 1 atmosphere of dihydrogen at 55 degrees Celsius for 24 hours gave NH3 in moderate yield. The same reaction in the presence of acetone produced acetone azine in high yield. None of these reactions proceeded in the absence of dihydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...