Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prev Vet Med ; 210: 105812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521412

RESUMO

Dystocia or difficult calving in cattle is detrimental to the health of the afflicted cows and has a negative economic impact on the dairy industry. The goal of this study was to create a data-driven tool for predicting the calving difficulty of non-heifer cows using input variables that are known prior to the moment of insemination. Compared to past studies, we excluded input variables that can only be known during or after insemination, such as birth weight and gestation length. This makes the model suitable for informing mating decisions that could reduce the incidence of difficult calvings or mitigate their consequences. We used a dataset consisting of 131,527 calving records of Holstein cattle, from which we derived a total of 274 phenotypic features and estimated breeding values. The distribution of classes in the dataset was 96.7 % normal calvings, and 3.3 % difficult calvings. We used a gradient boosted trees (XGBoost) as the learning model and a bagging ensemble approach to deal with the extreme class imbalance. The model achieved an average area under the ROC curve of 0.73 on unseen test data. Using feature importance analysis, we identified a number of features that have a high discriminatory value for calving difficulty, including maternal and paternal breeding values, and past phenotypic measurements of the cow.


Assuntos
Doenças dos Bovinos , Indústria de Laticínios , Distocia , Animais , Bovinos , Feminino , Gravidez , Peso ao Nascer , Doenças dos Bovinos/diagnóstico , Indústria de Laticínios/métodos , Distocia/diagnóstico , Distocia/veterinária , Inseminação , Reprodução , Fatores de Risco
2.
Genet Sel Evol ; 49(1): 51, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651536

RESUMO

BACKGROUND: Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs. RESULTS: The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively). CONCLUSIONS: In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred performance should be included to further assess the value of the BS model in genomic predictions.


Assuntos
Cruzamento , Genoma/genética , Modelos Genéticos , Alelos , Animais , Feminino , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Seleção Genética , Suínos
3.
G3 (Bethesda) ; 5(8): 1575-83, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26019187

RESUMO

Genomic selection has been widely implemented in dairy cattle breeding when the aim is to improve performance of purebred animals. In pigs, however, the final product is a crossbred animal. This may affect the efficiency of methods that are currently implemented for dairy cattle. Therefore, the objective of this study was to determine the accuracy of predicted breeding values in crossbred pigs using purebred genomic and phenotypic data. A second objective was to compare the predictive ability of SNPs when training is done in either single or multiple populations for four traits: age at first insemination (AFI); total number of piglets born (TNB); litter birth weight (LBW); and litter variation (LVR). We performed marker-based and pedigree-based predictions. Within-population predictions for the four traits ranged from 0.21 to 0.72. Multi-population prediction yielded accuracies ranging from 0.18 to 0.67. Predictions across purebred populations as well as predicting genetic merit of crossbreds from their purebred parental lines for AFI performed poorly (not significantly different from zero). In contrast, accuracies of across-population predictions and accuracies of purebred to crossbred predictions for LBW and LVR ranged from 0.08 to 0.31 and 0.11 to 0.31, respectively. Accuracy for TNB was zero for across-population prediction, whereas for purebred to crossbred prediction it ranged from 0.08 to 0.22. In general, marker-based outperformed pedigree-based prediction across populations and traits. However, in some cases pedigree-based prediction performed similarly or outperformed marker-based prediction. There was predictive ability when purebred populations were used to predict crossbred genetic merit using an additive model in the populations studied. AFI was the only exception, indicating that predictive ability depends largely on the genetic correlation between PB and CB performance, which was 0.31 for AFI. Multi-population prediction was no better than within-population prediction for the purebred validation set. Accuracy of prediction was very trait-dependent.


Assuntos
Genoma , Suínos/genética , Animais , Cruzamento , Genótipo , Hibridização Genética , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
4.
BMC Genet ; 15: 4, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405739

RESUMO

BACKGROUND: Androstenone is one of the major compounds responsible for boar taint, a pronounced urine-like odor produced when cooking boar meat. Several studies have identified quantitative trait loci (QTL) for androstenone level on Sus scrofa chromosome (SSC) 6. For one of the candidate genes in the region SULT2A1, a difference in expression levels in the testis has been shown at the protein and RNA level. RESULTS: Haplotypes were predicted for the QTL region and their effects were estimated showing that haplotype 1 was consistently related with a lower level, and haplotype 2 with a higher level of androstenone. A recombinant haplotype allowed us to narrow down the QTL region from 3.75 Mbp to 1.94 Mbp. An RNA-seq analysis of the liver and testis revealed six genes that were differentially expressed between homozygotes of haplotypes 1 and 2. Genomic sequences of these differentially expressed genes were checked for variations within potential regulatory regions. We identified one variant located within a CpG island that could affect expression of SULT2A1 gene. An allele-specific expression analysis in the testis did not show differential expression between the alleles of SULT2A1 located on the different haplotypes in heterozygous animals. However a synonymous mutation C166T (SSC6: 49,117,861 bp in Sscrofa 10.2; C/T) was identified within the exon 2 of SULT2A1 for which the haplotype 2 only had the C allele which was higher expressed than the T allele, indicating haplotype-independent allelic-imbalanced expression between the two alleles. A phylogenetic analysis for the 1.94 Mbp region revealed that haplotype 1, associated with low androstenone level, originated from Asia. CONCLUSIONS: Differential expression could be observed for six genes by RNA-seq analysis. No difference in the ratio of C:T expression of SULT2A1 for the haplotypes was found by the allele-specific expression analysis, however, a difference in expression between the C over T allele was found for a variation within SULT2A1, showing that the difference in androstenone levels between the haplotypes is not caused by the SNP in exon 2.


Assuntos
Androstenos/química , Locos de Características Quantitativas , Sulfotransferases/genética , Sus scrofa/genética , Testículo/enzimologia , Animais , Ilhas de CpG , Estudos de Associação Genética , Haplótipos , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Testículo/química
5.
Genet Mol Biol ; 36(4): 511-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24385854

RESUMO

Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...