Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037298

RESUMO

A quantitative theoretical framework has been created to model neutral beam injection and fast ion losses in the Wendelstein 7-X (W7-X) stellarator, including a novel method to develop synthetic diagnostics for fast ion loss detectors (FILDs) of many types, such as scintillating and Faraday Cup FILDs. This is the first time that this has been done in stellarator geometry with this level of fidelity, providing a way for fast ion losses to be predicted more precisely in future stellarator experiments and in W7-X. Simulations of the signal seen by a Faraday Cup FILD have been completed for multiple W7-X plasmas and show close agreement with the measured signals. This method is now applied to an actively water-cooled, scintillator-based FILD, which is currently in development to measure the fast ion loss distribution in W7-X in greater detail. The design makes use of a double slit to measure energy-and-pitch-angle-resolved losses of both co-going and counter-going fast ions. The diagnostic, which can be inserted to different radial positions, has been designed to withstand steady-state heat fluxes of up to 120 kW/m2 along with additional transient heat loads of 100 kW/m2 lasting for up to 20 s at a time. Simulations of W7-X standard magnetic configuration show up to 8 × 1013 (s-1 cm-2) ion fluxes onto the sensor from each neutral beam source and no signal from the counter-going slit. These simulations will help inform experimental proposals for future W7-X campaigns after installation of this diagnostic.

2.
Rev Sci Instrum ; 92(5): 053538, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243326

RESUMO

A poloidal array of scintillator-based Fast-Ion Loss Detectors (FILDs) has been installed in the ASDEX Upgrade (AUG) tokamak. While all AUG FILD systems are mounted on reciprocating arms driven externally by servomotors, the reciprocating system of the FILD probe located just below the midplane is based on a magnetic coil that is energized in real-time by the AUG discharge control system. This novel reciprocating system allows, for the first time, real-time control of the FILD position including infrared measurements of its probe head temperature to avoid overheating. This considerably expands the diagnostic operational window, enabling unprecedented radial measurements of fast-ion losses. Fast collimator-slit sweeping (up to 0.2 mm/ms) is used to obtain radially resolved velocity-space measurements along 8 cm within the scrape-off layer. This provides a direct evaluation of the neutral beam deposition profiles via first-orbit losses. Moreover, the light-ion beam probe (LIBP) technique is used to infer radial profiles of fast-ion orbit deflection. This radial-LIBP technique is applied to trapped orbits (exploring both the plasma core and the FILD stroke near the wall), enabling radial localization of internal plasma fluctuations (neoclassical tearing modes). This is quantitatively compared against electron cyclotron emission measurements, showing excellent agreement. For the first time, radial profiles of fast-ion losses in MHD quiescent plasmas as well as in the presence of magnetic islands and edge localized modes are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...