Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 69(9): 1023-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26414522

RESUMO

A quantum cascade laser spectrometer was used to obtain the reflection spectra of highly energetic materials (HEMs) deposited on nonideal, low-reflectivity substrates, such as travel-bag fabric (polyester), cardboard, and wood. Various deposition methods were used to prepare the standards and samples in the study. The HEMs used were the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT), the aliphatic nitrate ester pentaerythritol tetranitrate (PETN), and the aliphatic nitramine 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Chemometrics algorithms were applied to analyze the recorded spectra. Partial least squares (PLS) regression analysis was used to find the best correlation between the infrared signals and the surface concentrations of the samples, and PLS combined with discriminant analysis (PLS-DA) was used to discriminate, classify, and identity similarities in the spectral datasets. Several preprocessing steps were applied to prepare the mid-infrared spectra of HEMs deposited on the target substrates. The results demonstrate that the infrared vibrational method described in this study is well suited for the rapid screening analysis of HEMs on low-reflectivity substrates when a supervised model has been previously constructed or when a reference spectrum of the clean substrate can be acquired to be subtracted from the HEM-substrate spectrum.

2.
J Phys Chem A ; 117(41): 10753-63, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24050655

RESUMO

In this study, a mechanism for the uncatalyzed reaction between acetone and hydrogen peroxide is postulated. The reaction leads to the formation of the important homemade explosives collectively known as cyclic acetone peroxides (CAP). The proposed mechanistic scheme is based on Raman, GC-MS, and nuclear magnetic resonance measurements, and it is supported by ab initio density functional theory (DFT) calculations. The results demonstrate that the proposed mechanism for the uncatalyzed formation reaction of CAP occurs in three steps: monomer formation, polymerization of the 2-hydroperoxipropan-2-ol monomer, and cyclization. The temporal decay of the intensities of important assigned-bands is in excellent agreement with the proposed mechanism. Previous reports also confirm that the polymerization step is favored in comparison to other possible pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...