Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175172

RESUMO

Asiatic acid, a triterpenoid compound, has been shown to have anti-inflammatory activity through the inhibition of the formation of cyclooxygenase-2 (COX-2) in vitro and in vivo. This study was conducted to determine the binding stability and the inhibitory potential of asiatic acid as an anti-inflammatory candidate. The study involved in vitro testing utilizing a colorimetric kit as well as in silico testing for the pharmacophore modeling and molecular dynamic (MD) simulation of asiatic acid against COX-2 (PDB ID: 3NT1). The MD simulations showed a stable binding of asiatic acid to COX-2 and an RMSD range of 1-1.5 Å with fluctuations at the residues of Phe41, Leu42, Ile45, Arg44, Asp367, Val550, Glu366, His246, and Gly227. The total binding energy of the asiatic acid-COX-2 complex is -7.371 kcal/mol. The anti-inflammatory activity of the asiatic acid inhibition of COX-2 was detected at IC50 values of 120.17 µM. Based on pharmacophore modeling, we discovered that carboxylate and hydroxyl are the two main functional groups that act as hydrogen bond donors and acceptors interacting with the COX-2 enzyme. From the results, it is evident that asiatic acid is a potential anti-inflammatory candidate with high inhibitory activity in relation to the COX-2 enzyme.


Assuntos
Anti-Inflamatórios , Simulação de Dinâmica Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Triterpenos Pentacíclicos/farmacologia , Simulação de Acoplamento Molecular
2.
J Adv Pharm Technol Res ; 13(4): 322-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568052

RESUMO

Hydrazine is an alkaline reduction compound which is widely used in synthesis. Based on the structure-activity analysis, to elicit antitumor activity, the presence of the N-methyl group is an absolute requirement. The aim of the research is to synthesize a new hydrazine derivate compound that has potency as a novel anti-breast cancer. 4-hydrazinylphenyl benzenesulfonate was synthesized employing reduction and diazotization methods. Structure characterization was carried out using Fourier transform infrared (FTIR), C13-nuclear magnetic resonance (NMR), H1-NMR, and High Resolution Time-of-Flight Mass Spectrometry (HR-TOF-MS). The anti-cancer activity of this compound against breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line was determined using a PrestoBlue viability assay. The new of hydrazine derivative, 4-hydrazinylphenyl benzenesulfonate, has been successfully synthesized. The reduction and diazotization methods have been successfully used in the synthesis of new compound of hydrazine derivatives. Structure characterization of 4-hydrazinylphenyl benzenesulfonate was established using FTIR, C13-NMR, H1-NMR, and HR-TOF-MS. The anti-cancer activity of this compound against breast cancer MCF-7 cell line was determined using a PrestoBlue viability assay with IC50 0.00246 µg/mL or 9.32 nM. In conclusion, 4-hydrazinylphenyl benzenesulfonate was successfully synthesized as a new candidate for anti-breast cancer compound.

3.
J Adv Pharm Technol Res ; 13(3): 141-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935689

RESUMO

Non-small cell lung carcinoma (NSCLC) is a type of lung cancer with the highest prevalence and mortality rate worldwide. Many cases of this type of cancer are overexpression on epidermal growth factor receptor (EGFR). The use of currently available EGFR inhibitors as one of the treatment options for NSCLC still shows various shortcomings, especially the high failure rate of therapy due to resistance. It is important to find NSCLC drug candidates with EGFR inhibitory activity. There are various published articles and it is prominent to draw evidence-based scientific conclusions as a basis of decision-making to select potential compounds for further research. Polymer matrix composites and ScienceDirect are used as a database for article screening. Research using molecular docking method targeted to EGFR with parameters of Gibbs energy and amino acid interactions between ligands and drug targets are included in inclusion criteria. Compounds that achieve docking parameters and have comparable activity to NSCLC guideline drugs are conscientiously ranked. There are only 11 compounds that achieved the docking parameters and had comparable EGFR inhibitory potential. Top-rated compounds include 1,3,5-trisubstituted pyrazoline (3c), 1,3,5-trisubstituted pyrazoline (6c), 1,3,5-trisubstituted pyrazoline (8d), N-(3,4-Dimethylphenyl)-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g] quinazolin-2-yl) thio] acetamide. The top-rated compounds can be used and considered for further research processes.

4.
Methods ; 203: 498-510, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167916

RESUMO

For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus continues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested against five different known lineages. As a result, we could identify substances that work well on individual lineages and those showing broader efficacy. The most promising candidates among the currently used drugs were zafirlukast and simeprevir with an average binding affinity of -22 kcal/mol for spike proteins originating from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring further by in vitro and in vivo studies against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias
5.
J Adv Pharm Technol Res ; 12(3): 285-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345609

RESUMO

More than 111 million people worldwide have been affected by the COVID-19 outbreak caused by SARS-CoV-2. The main therapeutic target of COVID-19 is main protease (Mpro). It plays a key role as an enzyme in the SARS-CoV-2 replication and transcription. In this case, the alpha-mangostin potentially has antiviral activity against Mpro by inhibiting this enzyme. Nevertheless, the alpha-mangostin has low solubility and a lack of information about alpha-mangostin activity against the SARS-CoV-2. The aim of this study is to describe the molecular interactions and identify the pharmacokinetics profile between alpha-mangostin and its derivatives. in silico study was conducted by pharmacokinetics and toxicity prediction, molecular docking simulation, and Lipinski's rule of five. FKS9 has a Gibbs free energy value of-10.5 kcal/mol with an inhibition constant of 36.45 µM and an interaction with amino acid His41 residue. Its human intestinal absorption and Caco-2 values were 95.13% and 47.71% while the plasma protein binding and blood-brain barrier values were 96.66% and 6.99%. FKS9 also has no mutagenic and carcinogenic potential. FKS9 as an alpha-mangostin derivative had the best interaction with the Mpro enzyme and its pharmacokinetic profiles was identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...