Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 50: 102232, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101798

RESUMO

Ferroptosis and necroptosis are two pro-inflammatory cell death programs contributing to major pathologies and their inhibition has gained attention to treat a wide range of disease states. Necroptosis relies on activation of RIP1 and RIP3 kinases. Ferroptosis is triggered by oxidation of polyunsaturated phosphatidylethanolamines (PUFA-PE) by complexes of 15-Lipoxygenase (15LOX) with phosphatidylethanolamine-binding protein 1 (PEBP1). The latter, also known as RAF kinase inhibitory protein, displays promiscuity towards multiple proteins. In this study we show that RIP3 K51A kinase inactive mice have increased ferroptotic burden and worse outcome after irradiation and brain trauma rescued by anti-ferroptotic compounds Liproxstatin-1 and Ferrostatin 16-86. Given structural homology between RAF and RIP3, we hypothesized that PEBP1 acts as a necroptosis-to-ferroptosis switch interacting with either RIP3 or 15LOX. Using genetic, biochemical, redox lipidomics and computational approaches, we uncovered that PEBP1 complexes with RIP3 and inhibits necroptosis. Elevated expression combined with higher affinity enables 15LOX to pilfer PEBP1 from RIP3, thereby promoting PUFA-PE oxidation and ferroptosis which sensitizes Rip3K51A/K51A kinase-deficient mice to total body irradiation and brain trauma. This newly unearthed PEBP1/15LOX-driven mechanism, along with previously established switch between necroptosis and apoptosis, can serve multiple and diverse cell death regulatory functions across various human disease states.


Assuntos
Apoptose , Ferroptose , Animais , Morte Celular , Camundongos , Necrose , Oxirredução , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Exp Neurol ; 329: 113307, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32289317

RESUMO

Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Lesões Encefálicas Traumáticas/patologia , Humanos , Mitocôndrias/patologia , Oxirredução , Estresse Oxidativo/fisiologia
3.
Exp Neurol ; 316: 63-73, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981805

RESUMO

Cardiolipin (CL) is a mitochondria-specific phospholipid that is central to maintenance and regulation of mitochondrial bioenergetic and metabolic functions. CL molecular species display great tissue variation with brain exhibiting a distinct, highly diverse CL population. We recently showed that the appearance of unique brain-type CLs in plasma could serve as a brain-specific marker of mitochondrial/tissue injury in patients after cardiac arrest. Mitochondrial dysfunction has been increasingly implicated as a critical mechanism underlying the pathogenesis of traumatic brain injury (TBI). Therefore, we hypothesized that unique, brain-specific CL species from the injured brain are released to the peripheral circulation after TBI. To test this hypothesis, we performed a high-resolution mass spectrometry based phospholipidomics analysis of post-natal day (PND)17 rat brain and plasma after controlled cortical impact. We found a time-dependent increase in plasma CLs after TBI including the aforementioned brain-specific CL species early after injury, whereas CLs were significantly decreased in the injured brain. Compositional and quantitative correlational analysis suggested a possible release of CL into the systemic circulation following TBI. The identification of brain-type CLs in systemic circulation may indicate underlying mitochondrial dysfunction/loss after TBI. They may have potential as pharmacodynamics response biomarkers for targeted therapies.


Assuntos
Química Encefálica , Cardiolipinas/análise , Cardiolipinas/metabolismo , Traumatismos Craniocerebrais/metabolismo , Animais , Lesões Encefálicas Traumáticas , Cardiolipinas/sangue , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Lipidômica , Masculino , Espectrometria de Massas , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Am Chem Soc ; 140(51): 17835-17839, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525572

RESUMO

sn2-15-Hydroperoxy-eicasotetraenoyl-phosphatidylethanolamines ( sn2-15-HpETE-PE) generated by mammalian 15-lipoxygenase/phosphatidylethanolamine binding protein-1 (15-LO/PEBP1) complex is a death signal in a recently identified type of programmed cell demise, ferroptosis. How the enzymatic complex selects sn2-ETE-PE as the substrate among 1 of ∼100 total oxidizable membrane PUFA phospholipids is a central, yet unresolved question. To unearth the highly selective and specific mechanisms of catalytic competence, we used a combination of redox lipidomics, mutational and computational structural analysis to show they stem from (i) reactivity toward readily accessible hexagonally organized membrane sn2-ETE-PEs, (ii) relative preponderance of sn2-ETE-PE species vs other sn2-ETE-PLs, and (iii) allosteric modification of the enzyme in the complex with PEBP1. This emphasizes the role of enzymatic vs random stochastic free radical reactions in ferroptotic death signaling.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Morte Celular/fisiologia , Fosfatidiletanolaminas/metabolismo , Animais , Araquidonato 15-Lipoxigenase/química , Catálise , Linhagem Celular , Camundongos , Mutação , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfatidiletanolaminas/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...