Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 44035, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294119

RESUMO

Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 µm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.

2.
J Phys Condens Matter ; 23(23): 234109, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613704

RESUMO

The proton conductivity of a Nafion 112 membrane is measured with a high spatial resolution using electrochemical atomic force microscopy. Image analysis reveals an inhomogeneous conductivity distribution which is attributed to the limited connectivity of hydrophilic domains. This information relates to the micro-morphology which is due to phase separation of the hydrophobic polymer backbone and the hydrophilic pendant groups. The direct images relate to a different length scale and are complementary to the x-ray diffraction investigations which provide only average information. Furthermore, the measured current values reveal an interesting correlation with the size of the conductive areas. A bimodal conductivity distribution suggests that there are different mechanisms which contribute to the proton current in Nafion. Additionally, time dependence in local conductivity is found and interpreted in terms of redistribution of water in the membrane. A statistical analysis of the current distribution is performed and compared with theoretical simulations. Evidence is found for the existence of a critical current density. On a timescale of seconds the response of the conductive network is probed by applying voltage steps to the atomic force microscope tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...