Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 183, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233070

RESUMO

Ryanodine receptor 2 (RyR2) is abundantly expressed in the heart and brain. Mutations in RyR2 are associated with both cardiac arrhythmias and intellectual disability. While the mechanisms of RyR2-linked arrhythmias are well characterized, little is known about the mechanism underlying RyR2-associated intellectual disability. Here, we employed a mouse model expressing a green fluorescent protein (GFP)-tagged RyR2 and a specific GFP probe to determine the subcellular localization of RyR2 in hippocampus. GFP-RyR2 was predominantly detected in the soma and dendrites, but not the dendritic spines of CA1 pyramidal neurons or dentate gyrus granular neurons. GFP-RyR2 was also detected within the mossy fibers in the stratum lucidum of CA3, but not in the presynaptic terminals of CA1 neurons. An arrhythmogenic RyR2-R4496C+/- mutation downregulated the A-type K+ current and increased membrane excitability, but had little effect on the afterhyperpolarization current or presynaptic facilitation of CA1 neurons. The RyR2-R4496C+/- mutation also impaired hippocampal long-term potentiation, learning, and memory. These data reveal the precise subcellular distribution of hippocampal RyR2 and its important role in neuronal excitability, learning, and memory.


Assuntos
Neurônios , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
Cell Rep ; 32(12): 108169, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966798

RESUMO

Neuronal hyperactivity is an early primary dysfunction in Alzheimer's disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued ß-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-ß-amyloid-targeted anti-AD strategy.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Neurônios/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Região CA1 Hipocampal/patologia , Carvedilol/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Ativação do Canal Iônico , Potenciação de Longa Duração , Transtornos da Memória/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Neuroproteção/efeitos dos fármacos , Canais de Potássio/metabolismo , Células Piramidais/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Fatores de Tempo , Regulação para Cima
3.
FASEB J ; 33(8): 8892-8904, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051095

RESUMO

The endoplasmic reticulum (ER) plays a central role in cellular stress responses via mobilization of ER stress coping responses, such as the unfolded protein response (UPR). The inositol-requiring 1α (IRE1α) is an ER stress sensor and component of the UPR. Muscle cells also have a well-developed and highly subspecialized membrane network of smooth ER called the sarcoplasmic reticulum (SR) surrounding myofibrils and specialized for Ca2+ storage, release, and uptake to control muscle excitation-contraction coupling. Here, we describe 2 distinct pools of IRE1α in cardiac and skeletal muscle cells, one localized at the perinuclear ER and the other at the junctional SR. We discovered that, at the junctional SR, calsequestrin binds to the ER luminal domain of IRE1α, inhibiting its dimerization. This novel interaction of IRE1α with calsequestrin, one of the highly abundant Ca2+ handling proteins at the junctional SR, provides new insights into the regulation of stress coping responses in muscle cells.-Wang, Q., Groenendyk, J., Paskevicius, T., Qin, W., Kor, K. C., Liu, Y., Hiess, F., Knollmann, B. C., Chen, S. R. W., Tang, J., Chen, X.-Z., Agellon, L. B., Michalak, M. Two pools of IRE1α in cardiac and skeletal muscle cells.


Assuntos
Endorribonucleases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Células COS , Sinalização do Cálcio , Calsequestrina/metabolismo , Células Cultivadas , Chlorocebus aethiops , Endorribonucleases/química , Camundongos , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Coelhos , Retículo Sarcoplasmático/metabolismo
4.
Biophys J ; 114(2): 343-354, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401432

RESUMO

Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular , Camundongos , Transporte Proteico
5.
Epilepsia ; 58(4): 617-626, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28230232

RESUMO

OBJECTIVES: Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+ ]i . METHODS: We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload-Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+ ]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T-type voltage-gated Ca2+ channels. RESULTS: In CA3 pyramidal neurons, kainic acid induced significant elevations in [Ca2+ ]i and long-lasting neuronal hyperexcitability, both of which were reversed in a dose-dependent manner by CRS. Similarly, CRS suppressed spontaneous rhythmic epileptiform activity in hippocampal slices exposed to zero-Mg2+ or 4-aminopyridine. Treatment with CRS also protected murine hippocampal HT-22 cells against excitotoxic injury with glutamate, and this was accompanied by a reduction in [Ca2+ ]i . Neither kainic acid nor CRS alone altered the mitochondrial membrane potential (ΔΨ) in intact, acutely isolated mitochondria. In addition, CRS did not affect mitochondrial respiratory chain activity, Ca2+ -induced mitochondrial permeability transition, and Ca2+ release from the ER. However, CRS significantly decreased Ca2+ flux in human embryonic kidney tsA-201 cells transfected with Cav 3.1 (voltage-dependent T-type Ca2+ ) channels. SIGNIFICANCE: Our data indicate that the neuroprotective and antiseizure activity of CRS likely results in part from decreased [Ca2+ ]i accumulation through blockade of T-type Ca2+ channels.


Assuntos
Anticonvulsivantes/farmacologia , Canais de Cálcio Tipo T/metabolismo , Carbamatos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Células HEK293 , Hipocampo/citologia , Humanos , Técnicas In Vitro , Ácido Caínico/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Espectrometria de Fluorescência , Transfecção
6.
J Biol Chem ; 290(33): 20477-87, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26109063

RESUMO

The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca(2+) sparks showed that Ca(2+) sparks originated exclusively from RyR2 clusters. Ca(2+) sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca(2+) level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.


Assuntos
Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/citologia , Camundongos , Camundongos Transgênicos
7.
Biochem J ; 467(1): 177-90, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605235

RESUMO

The cardiac Ca²âº release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³6³5 in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³6°²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³6°² (C³6°²A) on store overload-induced Ca²âº release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³6°²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²âº release by reducing the termination threshold. As a result, C³6°²A markedly increased the fractional Ca²âº release. Furthermore, the C³6°²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²âº release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²âº release. In addition, Cys³6°² mutations (C³6°²A or C³6°²R) did not abolish the effect of CaM on Ca²âº-release termination. Therefore, RyR2-Cys³6°² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³6°² plays an important role in the activation and termination of Ca²âº release, but it is not essential for CaM regulation of RyR2.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Cisteína/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alquilação/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/química , Calmodulina/genética , Sequência Conservada , Dissulfetos/farmacologia , Etilmaleimida/farmacologia , Células HEK293 , Humanos , Cinética , Camundongos , Oxirredução , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Piridinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Reagentes de Sulfidrila/farmacologia
8.
Biochem J ; 454(1): 123-31, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23746327

RESUMO

CPVT (catecholaminergic polymorphic ventricular tachycardia) is an inherited life-threatening arrhythmogenic disorder. CPVT is caused by DADs (delayed after-depolarizations) that are induced by spontaneous Ca2+ release during SR (sarcoplasmic reticulum) Ca2+ overload, a process also known as SOICR (store-overload-induced Ca2+ release). A number of mutations in the cardiac ryanodine receptor RyR2 are linked to CPVT. Many of these CPVT-associated RyR2 mutations enhance the propensity for SOICR and DADs by sensitizing RyR2 to luminal or luminal/cytosolic Ca2+ activation. Recently, a novel CPVT RyR2 mutation, G230C, was found to increase the cytosolic, but not the luminal, Ca2+ sensitivity of single RyR2 channels in lipid bilayers. This observation led to the suggestion of a SOICR-independent disease mechanism for the G230C mutation. However, the cellular impact of this mutation on SOICR is yet to be determined. To this end, we generated stable inducible HEK (human embryonic kidney)-293 cell lines expressing the RyR2 WT (wild-type) and the G230C mutant. Using single-cell Ca2+ imaging, we found that the G230C mutation markedly enhanced the propensity for SOICR and reduced the SOICR threshold. Furthermore, the G230C mutation increased the sensitivity of single RyR2 channels to both luminal and cytosolic Ca2+ activation and the Ca2+-dependent activation of [3H]ryanodine binding. In addition, the G230C mutation decreased the thermal stability of the N-terminal region (amino acids 1-547) of RyR2. These data suggest that the G230C mutation enhances the propensity for SOICR by sensitizing the channel to luminal and cytosolic Ca2+ activation, and that G230C has an intrinsic structural impact on the N-terminal domains of RyR2.


Assuntos
Cálcio/metabolismo , Mutação Puntual/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Regulação para Cima/genética , Animais , Cálcio/química , Células HEK293 , Humanos , Camundongos , Estrutura Terciária de Proteína/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
9.
Can J Cardiol ; 29(8): 993-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23498838

RESUMO

Mutations in ryanodine receptor 2 (RYR2) gene can cause catecholaminergic polymorphic ventricular tachycardia (CPVT). The novel RYR2-S4153R mutation has been implicated as a cause of CPVT and atrial fibrillation. The mutation has been functionally characterized via store-overload-induced Ca(2+) release (SOICR) and tritium-labelled ryanodine ([(3)H]ryanodine) binding assays. The S4153R mutation enhanced propensity for spontaneous Ca(2+) release and reduced SOICR threshold but did not alter Ca(2+) activation of [(3)H]ryanodine binding, a common feature of other CPVT gain-of-function RYR2 mutations. We conclude that the S4153R mutation is a gain-of-function RYR2 mutation associated with a clinical phenotype characterized by both CPVT and atrial fibrillation.


Assuntos
Fibrilação Atrial/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Células HEK293 , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...