Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14432, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211448

RESUMO

G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Quadruplex G , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Sequência de Bases , Benzoxazinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , Quadruplex G/efeitos dos fármacos , Genoma Humano , Genótipo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Quinolonas/farmacologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS Pathog ; 9(7): e1003518, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935490

RESUMO

To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL) effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR) model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Salmonella typhimurium/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/química , Linhagem Celular , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 104(10): 3925-30, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360454

RESUMO

To systematically identify genes that maintain genome structure, yeast knockout mutants were examined by using three assays that followed marker inheritance in different chromosomal contexts. These screens identified 130 null mutant strains exhibiting chromosome instability (CIN) phenotypes. Differences in both phenotype severity and assay specificity were observed. The results demonstrate the advantages of using complementary assays to comprehensively identify genome maintenance determinants. Genome structure was important in determining the spectrum of gene and pathway mutations causing a chromosome instability phenotype. Protein similarity identified homologues in other species, including human genes with relevance to cancer. This extensive genome instability catalog can be combined with emerging genetic interaction data from yeast to support the identification of candidate targets for therapeutic elimination of chromosomally unstable cancer cells by selective cell killing.


Assuntos
Genes Fúngicos , Genoma Fúngico , Neoplasias/genética , Mapeamento Cromossômico , Cromossomos , Teste de Complementação Genética , Técnicas Genéticas , Haploidia , Humanos , Cariotipagem , Modelos Biológicos , Modelos Genéticos , Mutação , Neoplasias/metabolismo , Fenótipo , Transgenes
4.
Nature ; 446(7137): 806-10, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17314980

RESUMO

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Assuntos
Cromossomos Fúngicos/metabolismo , Epistasia Genética , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Reparo do DNA , Replicação do DNA , Histonas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Curva ROC , Saccharomyces cerevisiae/citologia , Transcrição Gênica
5.
Genetics ; 172(4): 2025-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16636111

RESUMO

Fundamental biological knowledge and the technology to acquire it have been immeasurably advanced by past efforts to understand and manipulate the genomes of model organisms. Has the utility of bacteria, yeast, worms, flies, mice, plants, and other models now peaked and are humans poised to become the model organism of the future? The Genetics Society of America recently convened its 2006 meeting entitled "Genetic Analysis: Model Organisms to Human Biology" to examine the future role of genetic research. (Because of time limitations, the meeting was unable to cover the substantial contributions and future potential of research on model prokaryotic organisms.) In fact, the potential of model-organism-based studies has grown substantially in recent years. The genomics revolution has revealed an underlying unity between the cells and tissues of eukaryotic organisms from yeast to humans. No uniquely human biological mechanisms have yet come to light. This common evolutionary heritage makes it possible to use genetically tractable organisms to model important aspects of human medical disorders such as cancer, birth defects, neurological dysfunction, reproductive failure, malnutrition, and aging in systems amenable to rapid and powerful experimentation. Applying model systems in this way will allow us to identify common genes, proteins, and processes that underlie human medical conditions. It will allow us to systematically decipher the gene-gene and gene-environment interactions that influence complex multigenic disorders. Above all, disease models have the potential to address a growing gap between our ability to collect human genetic data and to productively interpret and apply it. If model organism research is supported with these goals in mind, we can look forward to diagnosing and treating human disease using information from multiple systems and to a medical science built on the unified history of life on earth.


Assuntos
Genética , Animais , Epigênese Genética , Variação Genética , Humanos , Modelos Animais , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Células-Tronco/metabolismo
6.
Proc Natl Acad Sci U S A ; 102(39): 13956-61, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16172405

RESUMO

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosome stability by performing genome-wide screens employing synthetic genetic array methodology. Two genetic approaches (a series of synthetic lethal and synthetic dosage lethal screens) isolated 211 nonessential deletion mutants that were unable to tolerate defects in kinetochore function. Although synthetic lethality and synthetic dosage lethality are thought to be based upon similar genetic principles, we found that the majority of interactions associated with these two screens were nonoverlapping. To functionally characterize genes isolated in our screens, a secondary screen was performed to assess defects in chromosome segregation. Genes identified in the secondary screen were enriched for genes with known roles in chromosome segregation. We also uncovered genes with diverse functions, such as RCS1, which encodes an iron transcription factor. RCS1 was one of a small group of genes identified in all three screens, and we used genetic and cell biological assays to confirm that it is required for chromosome stability. Our study shows that systematic genetic screens are a powerful means to discover roles for uncharacterized genes and genes with alternative functions in chromosome maintenance that may not be discovered by using proteomics approaches.


Assuntos
Segregação de Cromossomos/genética , Genes Fúngicos , Genes Letais , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Instabilidade Cromossômica/genética , Cromossomos Fúngicos/metabolismo , Genômica/métodos , Cinetocoros/metabolismo , Mutação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genetics ; 171(2): 489-501, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15998715

RESUMO

The maintenance of genome stability is a fundamental requirement for normal cell cycle progression. The budding yeast Saccharomyces cerevisiae is an excellent model to study chromosome maintenance due to its well-defined centromere and kinetochore, the region of the chromosome and associated protein complex, respectively, that link chromosomes to microtubules. To identify genes that are linked to chromosome stability, we performed genome-wide synthetic lethal screens using a series of novel temperature-sensitive mutations in genes encoding a central and outer kinetochore protein. By performing the screens using different mutant alleles of each gene, we aimed to identify genetic interactions that revealed diverse pathways affecting chromosome stability. Our study, which is the first example of genome-wide synthetic lethal screening with multiple alleles of a single gene, demonstrates that functionally distinct mutants uncover different cellular processes required for chromosome maintenance. Two of our screens identified APQ12, which encodes a nuclear envelope protein that is required for proper nucleocytoplasmic transport of mRNA. We find that apq12 mutants are delayed in anaphase, rereplicate their DNA, and rebud prior to completion of cytokinesis, suggesting a defect in controlling mitotic progression. Our analysis reveals a novel relationship between nucleocytoplasmic transport and chromosome stability.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Instabilidade Cromossômica/genética , Genes Fúngicos/genética , Cinetocoros/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Análise por Conglomerados , Citometria de Fluxo , Genes Letais/genética , Mutação/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Proteomics ; 5(2): 380-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15648049

RESUMO

Quantitative protein profiling using the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS) enables the pair-wise comparison of protein expression levels in biological samples. A new version of the ICAT reagent with an acid-cleavable bond, which allows removal of the biotin moiety prior to MS and which utilizes (13)C substitution for (12)C in the heavy-ICAT reagent rather than (2)H (for (1)H) as in the original reagent, was investigated. We developed and validated an MS data acquisition strategy using this new reagent that results in an increased number of protein identifications per experiment, without losing the accuracy of protein quantification. This was achieved by following a single survey (precursor) ion scan and serial collision induced dissociations (CIDs) of four different precursor ions observed in the prior survey scan. This strategy is common to many high-performance liquid chromatography-electrospray ionization (HPLC-ESI)-MS shotgun proteomic strategies, but heretofore not to ICAT experiments. This advance is possible because the new ICAT reagent uses (13)C as the "heavy" element rather than (2)H, thus, eliminating the slight delay in retention time of ICAT-labeled "light" peptides on a C18-based HPLC separation that occurs with (2)H and (1)H. Analyses using this new scheme of an ICAT-labeled trypsin-digested six protein mixture as well as a tryptic digest of a total yeast lysate, indicated that about two times more proteins were identified in a single analysis, and that there was no loss in accuracy of quantification.


Assuntos
Isótopos de Carbono/química , Indicadores e Reagentes/química , Marcação por Isótopo , Proteoma/análise , Carbono/química , Cromatografia por Troca Iônica , Eletroforese Capilar , Isótopos/química , Espectrometria de Massas , Análise Serial de Proteínas , Proteínas/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismo , Tripsina/metabolismo
10.
Proc Natl Acad Sci U S A ; 101(13): 4525-30, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15070751

RESUMO

Methods to systematically test drugs against all possible proteins in a cell are needed to identify the targets underlying their therapeutic action and unwanted effects. Here, we show that a genome-wide drug-induced haploinsufficiency screen by using yeast can reveal drug mode of action in yeast and can be used to predict drug mode of action in human cells. We demonstrate that dihydromotuporamine C, a compound in preclinical development that inhibits angiogenesis and metastasis by an unknown mechanism, targets sphingolipid metabolism. The systematic, unbiased and genome-wide nature of this technique makes it attractive as a general approach to identify cellular pathways affected by drugs.


Assuntos
Antifúngicos/farmacologia , Deleção de Genes , Genoma Fúngico , Saccharomyces cerevisiae/genética , Deleção de Sequência , Animais , Testes de Sensibilidade Microbiana , Ploidias , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais , Esfingolipídeos/biossíntese
11.
Eukaryot Cell ; 1(4): 558-67, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12456004

RESUMO

The Schizosaccharomyces pombe fbp1 gene, encoding fructose-1,6-bisphosphatase, is transcriptionally repressed by glucose. Mutations that confer constitutive fbp1 transcription identify git (glucose-insensitive transcription) genes that encode components of a cyclic AMP (cAMP) signaling pathway required for adenylate cyclase activation. Four of these genes encode the three subunits of a heterotrimeric G protein (gpa2, git5, and git11) and a G protein-coupled receptor (git3). Three additional genes, git1, git7, and git10, act in parallel to or downstream from the G protein genes. Here, we describe the cloning and characterization of the git7 gene. The Git7p protein is a member of the Saccharomyces cerevisiae Sgtlp protein family. In budding yeast, Sgtlp associates with Skplp and plays an essential role in kinetochore assembly, while in Arabidopsis, a pair of SGT1 proteins have been found to be involved in plant disease resistance through an interaction with RAR1. Like S. cerevisiae Sgtlp, Git7p is essential, but this requirement appears to be due to roles in septation and cell wall integrity, which are unrelated to cAMP signaling, as S. pombe cells lacking either adenylate cyclase or protein kinase A are viable. In addition, git7 mutants are sensitive to the microtubule-destabilizing drug benomyl, although they do not display a chromosome stability defect. Two alleles of git7 that are functional for cell growth and septation but defective for glucose-triggered cAMP signaling encode proteins that are altered in the highly conserved carboxy terminus. The S. cerevisiae and human SGT1 genes both suppress git7-93 but not git7-235 for glucose repression of fbp1 transcription and benomyl sensitivity. This allele-specific suppression indicates that the Git7p/Sgtlp proteins may act as multimers, such that Git7-93p but not Git7-235p can deliver the orthologous proteins to species-specific targets. Our studies suggest that members of the Git7p/Sgt1p protein family may play a conserved role in the regulation of adenylate cyclase activation in S. pombe, S. cerevisiae, and humans.


Assuntos
AMP Cíclico/metabolismo , Glucose/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/metabolismo , Clonagem Molecular , DNA Fúngico/genética , Frutose-Bifosfatase , Genes Fúngicos , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Humanos , Cinetocoros/metabolismo , Óperon Lac , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...