Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 8(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512835

RESUMO

Protein ubiquitinations play pivotal roles in many cellular processes, including homeostasis, responses to various stimulations, and progression of diseases. Deubiquitinating enzymes (DUBs) remove ubiquitin molecules from ubiquitinated proteins and cleave the polyubiquitin chain, thus negatively regulating numerous ubiquitin-dependent processes. Dysfunctions of many DUBs reportedly cause various diseases; therefore, DUBs are considered as important drug targets, although the biochemical characteristics and cellular functions of many DUBs are still unclear. Here, we established a human DUB protein array to detect the activity and linkage specificity of almost all human DUBs. Using a wheat cell-free protein synthesis system, 88 full-length recombinant human DUB proteins were prepared and termed the DUB array. In vitro DUB assays were performed with all of these recombinant DUBs, using eight linkage types of diubiquitins as substrates. As a result, 80 DUBs in the array showed DUB activities, and their linkage specificities were determined. These 80 DUBs included many biochemically uncharacterized DUBs in the past. In addition, taking advantage of these active DUB proteins, we applied the DUB array to evaluate the selectivities of DUB inhibitors. We successfully developed a high-throughput and semi-quantitative DUB assay based on AlphaScreen technology, and a model study using two commercially available DUB inhibitors revealed individual selectivities to 29 DUBs, as previously reported. In conclusion, the DUB array established here is a powerful tool for biochemical analyses and drug discovery for human DUBs.

2.
Bot Stud ; 58(1): 59, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222727

RESUMO

BACKGROUND: Mycoheterotrophic plants are one of the most difficult plant groups to conserve because they are entirely dependent on symbiotic fungi. Establishment of viable culture systems would greatly aid their conservation. We describe a simple culture system for the mycoheterotrophic orchid, Gastrodia pubilabiata, that does not require laboratory facilities. The orchid is symbiotic with leaf-litter-decomposing fungi. RESULTS: Gastrodia pubilabiata seeds were incubated in plastic boxes or glass bottles filled with leaf litter collected from the natural habitat of the species. Seed germination was observed after 35 days and seedling development followed. Fungal isolates from seedlings were identified as Mycenaceae (Basidiomycota), a leaf-litter-decomposing mycorrhizal fungus of Gastrodia species. CONCLUSION: Our method can be used to conserve endangered mycoheterotrophic plants associated with leaf litter-decomposing fungi efficiently, and can also serve as a model system for physiological and molecular studies of such plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...