Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2654, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551452

RESUMO

In bone marrow, special microenvironments, known as niches, are essential for the maintenance of hematopoietic stem cells (HSCs). A population of mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells or leptin receptor-expressing cells are the major cellular component of HSC niches. The molecular regulation of HSC niche properties is not fully understood. The role of Runx transcription factors, Runx1 and Runx2 in HSC cellular niches remains unclear. Here we show that Runx1 is predominantly expressed in CAR cells and that mice lacking both Runx1 and Runx2 in CAR cells display an increase in fibrosis and bone formation with markedly reduced hematopoietic stem and progenitor cells in bone marrow. In vitro, Runx1 is induced by the transcription factor Foxc1 and decreases fibrotic gene expression in CAR cells. Thus, HSC cellular niches require Runx1 or Runx2 to prevent their fibrotic conversion and maintain HSCs and hematopoiesis in adults.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Animais , Medula Óssea/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fibrose , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos
2.
Curr Top Microbiol Immunol ; 434: 33-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34850281

RESUMO

Most types of blood cells, including immune cells are generated from hematopoietic stem cells (HSCs) within bone marrow in the adult. Most HSCs are in contact with and require the special microenvironment known as a niche for their maintenance. It has been thought that HSC niches comprise various types of support cells that provide critical signals, including cytokines and extracellular matrix for HSC regulation. However, among these cells, several lines of evidence have demonstrated that the population of bone marrow-specific mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, which overlap strongly with leptin receptor-expressing (LepR+) cells, is the major cellular component of HSC niches. CAR/LepR+ cells give rise to most adipocytes and osteoblasts in adult bone marrow and express much higher levels of HSC niche factors, including cytokines CXCL12 and stem cell factor (SCF), which are essential for HSC maintenance, and transcription factors Foxc1 and Ebf3, which are essential for the formation and maintenance of HSC niches than other types of cells. CAR/LepR+ cells are present in human bone marrow, undergo fibrotic expansion, and have reduced expression of HSC niche factors in hematopoietic malignancies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Medula Óssea , Neoplasias Hematológicas/genética , Hematopoese , Células-Tronco Hematopoéticas , Homeostase , Humanos , Nicho de Células-Tronco , Microambiente Tumoral
3.
Br J Haematol ; 193(3): 659-668, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33837967

RESUMO

A population of mesenchymal stem cells, termed CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells or leptin receptor-expressing cells, are the major cellular component of niches for haematopoietic stem cells (HSCs) in murine bone marrow. CAR cells are characterized by several salient features, including much higher expression of CXCL12, stem cell factor (SCF), forkhead box C1 (FOXC1) and early B-cell factor 3 (EBF3), which are essential for HSC maintenance, than other cells. However, the human counterpart of CAR cells has not been fully described. Here, we show the presence of cells expressing much higher CXCL12 than other cells in human adult bone marrow using a flow cytometry-based in situ technique that enables high-throughput detection of mRNA at single-cell resolution. Most CXCL12hi cells expressed high levels of SCF, FOXC1 and EBF3 and had the potential to differentiate into adipocytes and osteoblasts. Histologically, the nuclei of CXCL12hi cells were identified and quantified by EBF3 expression in fixed marrow sections. CXCL12hi cells sorted from residual bone marrow aspirates of chronic myeloid leukaemia patients expressed reduced levels of CXCL12, SCF, FOXC1 and EBF3 in correlation with increased leukaemic burden. Together, we identified the human counterpart of CAR cells, enabling the evaluation of their alterations in various haematological disorders by flow cytometric and histological analyses.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas de Neoplasias/metabolismo , Nicho de Células-Tronco , Adulto , Feminino , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Fator de Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Ther Nucleic Acids ; 12: 793-804, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30141412

RESUMO

Highly active antiretroviral therapy (HAART) has markedly prolonged the prognosis of HIV-1 patients. However, lifelong dependency on HAART is a continuing challenge, and an effective therapeutic is much desired. Recently, introduction of short hairpin RNA (shRNA) targeting the HIV-1 promoter was found to suppress HIV-1 replication via transcriptional gene silencing (TGS). The technology is expected to be applied with hemato-lymphopoietic cell transplantation of HIV patients to suppress HIV transcription in transplanted hemato-lymphopoietic cells. Combination of the TGS technology with new cell transplantation strategy with induced pluripotent stem cell (iPSC)-derived hemato-lymphopoietic cells might contribute to new gene therapy in the HIV field. In this study, we evaluated iPSC-derived macrophage functions and feasibility of TGS technology in macrophages. Human iPSCs were transduced with shRNAs targeting the HIV-1 promoter region (shPromA) by using a lentiviral vector. The shPromA-transfected iPSCs were successfully differentiated into functional macrophages, and they exhibited strong protection against HIV-1 replication with alteration in the histone structure of the HIV-1 promoter region to induce heterochromatin formation. These results indicated that iPS-derived macrophage is a useful tool to investigate HIV infection and protection, and that the TGS technology targeting the HIV promoter is a potential candidate of new gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...