Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 26(5): 878-885, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32854802

RESUMO

The phase transition in the melting of Sn­Bi eutectic solder alloy particles was observed by in situ hard X-ray ptychographic coherent diffraction imaging with a pin-point heating system. Ptychographic diffraction patterns of micrometer-sized Sn­Bi particles were collected at temperatures from room temperature to 540 K. The projection images of each particle were reconstructed at a spatial resolution of 25 nm, showing differences in the phase shifts due to two crystal phases in the Sn­Bi alloy system and the Sn/Bi oxides at the surface. By quantitatively evaluating the Bi content, it became clear that the nonuniformity of the composition of Sn and Bi at the single-particle level exists when the particles are synthesized by centrifugal atomization.

2.
J Synchrotron Radiat ; 27(Pt 2): 455-461, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153284

RESUMO

This work demonstrates a combination technique of X-ray ptychography and the extended X-ray absorption fine structure (ptychography-EXAFS) method, which can determine the interatomic distances of bulk materials at the nanoscale. In the high-resolution ptychography-EXAFS method, it is necessary to use high-intense coherent X-rays with a uniform wavefront in a wide energy range, hence a ptychographic measurement system installed with advanced Kirkpatrick-Baez mirror focusing optics is developed and its performance is evaluated. Ptychographic diffraction patterns of micrometre-size MnO particles are collected by using this system at 139 energies between 6.504 keV and 7.114 keV including the Mn K absorption edge, and then the EXAFS of MnO is derived from the reconstructed images. By analyzing the EXAFS spectra obtained from a 48 nm × 48 nm region, the nanoscale bond lengths of the first and second coordination shells of MnO are determined. The present approach has great potential to elucidate the unclarified relationship among the morphology, electronic state and atomic arrangement of inhomogeneous bulk materials with high spatial resolution.

3.
Opt Express ; 28(2): 1216-1224, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121836

RESUMO

We report the first demonstration of multibeam ptychography using synchrotron hard X-rays, which can enlarge the field of view of the reconstructed image of objects by efficiently using partially coherent X-rays. We measured the ptychographic diffraction patterns of a Pt test sample and MnO particles using three mutually incoherent coherent beams with a high intensity that were produced by using both the multiple slits and a pair of focusing mirrors. We successfully reconstructed the phase map of the samples at a spatial resolution of 25 nm in a field of view about twice as wide as that in the single-beam ptychography. We also computationally simulated a feasible experimental setup using random modulators to further enlarge the field of view by increasing the number of available beams. The present method has the potential to enable the high spatial resolution and large field-of-view observation of specimens in materials science and biology.

4.
Opt Express ; 26(24): 31199-31208, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650709

RESUMO

Ptychographic X-ray computed tomography (PXCT) is a potential tool for visualizing three-dimensional (3D) structures of large-volume samples at high spatial resolution. Currently, both the requirement of a large number of views and the narrow depth of field limit the range of applications of PXCT. Here, we propose an improved 3D reconstruction algorithm for PXCT that is based on 3D iterative reconstruction and multislice phase retrieval calculation. Computer simulations showed that the proposed algorithm can reduce the number of required views without degrading the spatial resolution. In a synchrotron experiment, ptychographic diffraction data sets of a flat and thick processor specimen were collected under a limited-angle condition, and then high-resolution multislice images of the Cu multilevel interconnects were clearly reconstructed using the proposed algorithm. The proposed algorithm is expected to open up a new frontier of large-volume 3D nanoimaging in various fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA