Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 589-596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505238

RESUMO

Hygromycin A is a broad-spectrum antibiotic that contains a furanose, cinnamic acid, and aminocyclitol moieties. The biosynthesis of the aminocyclitol has been proposed to proceed through six enzymatic steps from glucose 6-phosphate through myo-inositol to the final methylenedioxy-containing aminocyclitol. Although there is some in vivo evidence for this proposed pathway, biochemical support for the individual enzyme activities is lacking. In this study, we verify the activity for one enzyme in this pathway. We show that Hyg17 is a myo-inositol dehydrogenase that has a unique substrate scope when compared to other myo-inositol dehydrogenases. Furthermore, we analyze sequences from the protein family containing Hyg17 and discuss genome mining strategies that target this protein family to identify biosynthetic clusters for natural product discovery.

2.
ACS Chem Biol ; 16(4): 701-711, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33764747

RESUMO

N-Glycosylation is a fundamental protein modification found in both eukaryotes and archaea. Despite lacking N-glycans, many commensal and pathogenic bacteria have developed mechanisms to degrade these isoforms for a variety of functions, including nutrient acquisition and evasion of the immune system. Although much is known about many of the enzymes responsible for N-glycan degradation, the enzymes involved in cleaving the N-glycan core have only recently been discovered. Thus, some of the structural details have yet to be characterized, and little is known about their full distribution among bacterial strains and specifically within potential Gram-positive polysaccharide utilization loci. Here, we report crystal structures for Family 5, Subfamily 18 (GH5_18) glycoside hydrolases from the gut bacterium Bifidobacterium longum (BlGH5_18) and the soil bacterium Streptomyces cattleya (ScGH5_18), which hydrolyze the core Manß1-4GlcNAc disaccharide. Structures of these enzymes in complex with Manß1-4GlcNAc reveal a more complete picture of the -1 subsite. They also show that a C-terminal active site cap present in BlGH5_18 is absent in ScGH5_18. Although this C-terminal cap is not widely distributed throughout the GH5_18 family, it is important for full enzyme activity. In addition, we show that GH5_18 enzymes are found in Gram-positive polysaccharide utilization loci that share common genes, likely dedicated to importing and degrading N-glycan core structures.


Assuntos
Bifidobacterium longum/metabolismo , Polissacarídeos/metabolismo , Bifidobacterium longum/genética , Domínio Catalítico , Genes Bacterianos , Glicosilação , Hidrólise
3.
Anaerobe ; 68: 102320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33460787

RESUMO

Bifidobacterium longum subsp. infantis ATCC 15697 has emerged as a model for infant gut-associated bifidobacterial strains. Here we present a genetic system for B. longum subsp. infantis ATCC 15697 using its own DNA restriction-modification systems and create a fucose permease deletion mutant lacking the ability to use free fucose as a carbon source.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium longum subspecies infantis/enzimologia , Fucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo , Deleção de Genes , Proteínas de Membrana Transportadoras/metabolismo
5.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546617

RESUMO

Plant root-associated microbes promote plant growth and elicit induced systemic resistance (ISR) to foliar pathogens. In an attempt to find novel growth-promoting and ISR-inducing strains, we previously identified strains of root-associated Pseudomonas spp. that promote plant growth but unexpectedly elicited induced systemic susceptibility (ISS) rather than ISR to foliar pathogens. Here, we demonstrate that the ISS-inducing phenotype is common among root-associated Pseudomonas spp. Using comparative genomics, we identified a single Pseudomonas fluorescens locus that is unique to ISS strains. We generated a clean deletion of the 11-gene ISS locus and found that it is necessary for the ISS phenotype. Although the functions of the predicted genes in the locus are not apparent based on similarity to genes of known function, the ISS locus is present in diverse bacteria, and a subset of the genes were previously implicated in pathogenesis in animals. Collectively, these data show that a single bacterial locus contributes to modulation of systemic plant immunity.IMPORTANCE Microbiome-associated bacteria can have diverse effects on health of their hosts, yet the genetic and molecular bases of these effects have largely remained elusive. This work demonstrates that a novel bacterial locus can modulate systemic plant immunity. Additionally, this work demonstrates that growth-promoting strains may have unanticipated consequences for plant immunity, and this is critical to consider when the plant microbiome is being engineered for agronomic improvement.


Assuntos
Loci Gênicos , Genômica , Imunidade Vegetal , Raízes de Plantas/microbiologia , Pseudomonas/genética , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Folhas de Planta/microbiologia , Pseudomonas/patogenicidade
6.
Nat Chem Biol ; 15(11): 1043-1048, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31406372

RESUMO

Microbes produce specialized metabolites to thrive in their natural habitats. However, it is rare that a given specialized metabolite is biosynthesized via pathways with distinct intermediates and enzymes. Here, we show that the core assembly mechanism of the antibiotic indolmycin in marine gram-negative Pseudoalteromonas luteoviolacea is distinct from its counterpart in terrestrial gram-positive Streptomyces species, with a molecule that is a shunt product in the Streptomyces pathway employed as a biosynthetic substrate for a novel metal-independent N-demethylindolmycin synthase in the P. luteoviolacea pathway. To provide insight into this reaction, we solved the 1.5 Å resolution structure in complex with product and identified the active site residues. Guided by our biosynthetic insights, we then engineered the Streptomyces indolmycin producer for titer improvement. This study provides a paradigm for understanding how two unique routes to a microbial specialized metabolite can emerge from convergent biosynthetic transformations.


Assuntos
Bactérias/metabolismo , Vias Biossintéticas , Bactérias/genética , Biocatálise , Família Multigênica
7.
J Am Chem Soc ; 141(31): 12258-12267, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298853

RESUMO

Acyclic imines are unstable in aqueous conditions. For this reason, known imine reductases, which enable the synthesis of chiral amines, mainly intercept stable cyclic imines. Here we report the detailed biochemical and structural characterization of Bsp5, an imino acid reductase from the d-2-hydroxyacid dehydrogenase family that reduces acyclic imino acids produced in situ by a partner oxidase. We determine a 1.6 Å resolution structure of Bsp5 in complex with d-arginine and coenzyme NADPH. Combined with mutagenesis work, our study reveals the minimal structural constraints for its biosynthetic activity. Furthermore, we demonstrate that Bsp5 can intercept more complex products from an alternate oxidase partner, suggesting that this oxidase-imino acid reductase pair could be evolved for biocatalytic conversion of l-amino acids to d-amino acids.


Assuntos
Iminoácidos/química , Iminoácidos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise , Modelos Moleculares , Domínios Proteicos
8.
Nat Chem Biol ; 13(8): 836-838, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628093

RESUMO

Molecules containing a nitrogen-nitrogen (N-N) linkage have a variety of structures and biological activities; however, no enzyme has yet been demonstrated to catalyze N-N bond formation in an organic molecule. Here we report that the heme-dependent enzyme KtzT from Kutzneria sp. 744 catalyzes N-N bond formation in the biosynthesis of piperazate, a building block for nonribosomal peptides.


Assuntos
Oxigenases de Função Mista/metabolismo , Nitrogênio/metabolismo , Piridazinas/metabolismo , Actinomycetales/enzimologia , Oxigenases de Função Mista/química , Conformação Molecular , Nitrogênio/química , Piridazinas/química
9.
Sci Rep ; 7(1): 1495, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473713

RESUMO

Subtilase cytotoxin (SubAB) of Escherichia coli is an AB5 class bacterial toxin. The pentameric B subunit (SubB) binds the cellular carbohydrate receptor, α2-3-linked N-glycolylneuraminic acid (Neu5Gc). Neu5Gc is not expressed on normal human cells, but is expressed by cancer cells. Elevated Neu5Gc has been observed in breast, ovarian, prostate, colon and lung cancer. The presence of Neu5Gc is prognostically important, and correlates with invasiveness, metastasis and tumour grade. Neu5Gc binding by SubB suggests that it may have utility as a diagnostic tool for the detection Neu5Gc tumor antigens. Native SubB has 20-fold less binding to N-acetlylneuraminic acid (Neu5Ac); over 30-fold less if the Neu5Gc linkage was changed from α2-3 to α2-6. Using molecular modeling approaches, site directed mutations were made to reduce the α2-3 [Formula: see text] α2-6-linkage preference, while maintaining or enhancing the selectivity of SubB for Neu5Gc over Neu5Ac. Surface plasmon resonance and glycan array analysis showed that the SubBΔS106/ΔT107 mutant displayed improved specificity towards Neu5Gc and bound to α2-6-linked Neu5Gc. SubBΔS106/ΔT107 could discriminate NeuGc- over Neu5Ac-glycoconjugates in ELISA. These data suggest that improved SubB mutants offer a new tool for the testing of biological samples, particularly serum and other fluids from individuals with cancer or suspected of having cancer.


Assuntos
Lectinas/química , Ácidos Neuramínicos/química , Animais , Sítios de Ligação , Bovinos , Ensaio de Imunoadsorção Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Mutação/genética , Engenharia de Proteínas , Subtilisinas/química , Subtilisinas/genética , Ressonância de Plasmônio de Superfície
10.
EBioMedicine ; 18: 236-243, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28330602

RESUMO

Streptococcus pneumoniae (the pneumococcus) is a major human pathogen, causing a broad spectrum of diseases including otitis media, pneumonia, bacteraemia and meningitis. Here we examined the role of a potential pneumococcal meningitis vaccine antigen, alpha-glycerophosphate oxidase (SpGlpO), in nasopharyngeal colonization. We found that serotype 4 and serotype 6A strains deficient in SpGlpO have significantly reduced capacity to colonize the nasopharynx of mice, and were significantly defective in adherence to human nasopharyngeal carcinoma cells in vitro. We also demonstrate that intranasal immunization with recombinant SpGlpO significantly protects mice against subsequent nasal colonization by wild type serotype 4 and serotype 6A strains. Furthermore, we show that SpGlpO binds strongly to lacto/neolacto/ganglio host glycan structures containing the GlcNAcß1-3Galß disaccharide, suggesting that SpGlpO enhances colonization of the nasopharynx through its binding to host glycoconjugates. We propose that SpGlpO is a promising vaccine candidate against pneumococcal carriage, and warrants inclusion in a multi-component protein vaccine formulation that can provide robust, serotype-independent protection against all forms of pneumococcal disease.


Assuntos
Glicerolfosfato Desidrogenase/metabolismo , Glicoconjugados/metabolismo , Nasofaringe/microbiologia , Streptococcus pneumoniae/patogenicidade , Animais , Aderência Bacteriana/fisiologia , Sítios de Ligação , Linhagem Celular Tumoral , Feminino , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/imunologia , Glicoconjugados/química , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Simulação de Dinâmica Molecular , Vacinas Pneumocócicas/imunologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Sorogrupo , Streptococcus pneumoniae/enzimologia , Ressonância de Plasmônio de Superfície
11.
Proteins ; 85(5): 963-968, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28168775

RESUMO

Streptococcus pneumoniae harbors a significant number of transporters, including phosphotransferase (PTS) systems, allowing the bacterium to utilize a number of different carbohydrates for metabolic and other purposes. The genes encoding for one PTS transport system in particular (EIIfuc ) are found within a fucose utilization operon in S. pneumoniae TIGR4. Here, we report the three-dimensional structures of IIAfuc and IIBfuc providing evidence that this PTS system belongs to the EIIman family. Additionally, the predicted metabolic pathway for this distinctive fucose utilization system suggests that EIIfuc transports the H-disaccharide blood group antigen, which would represent a novel PTS transporter specificity. Proteins 2017; 85:963-968. © 2016 Wiley Periodicals, Inc.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Proteínas de Bactérias/química , Fucose/química , Proteínas de Membrana Transportadoras/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Streptococcus pneumoniae/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/genética , Modelos Moleculares , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/metabolismo
12.
J Biol Chem ; 290(52): 30888-900, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26491009

RESUMO

An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the ß-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-D-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-D-glucosamine-thiazoline (NGT), and N-acetyl-D-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter.


Assuntos
Proteínas de Bactérias/química , Genoma Bacteriano , Polissacarídeos/química , Streptococcus pneumoniae/enzimologia , beta-N-Acetil-Hexosaminidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Humanos , Polissacarídeos/genética , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
13.
J Am Chem Soc ; 137(17): 5695-705, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25870881

RESUMO

Blood transfusions are critically important in many medical procedures, but the presence of antigens on red blood cells (RBCs, erythrocytes) means that careful blood-typing must be carried out prior to transfusion to avoid adverse and sometimes fatal reactions following transfusion. Enzymatic removal of the terminal N-acetylgalactosamine or galactose of A- or B-antigens, respectively, yields universal O-type blood, but is inefficient. Starting with the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98), which cleaves the entire terminal trisaccharide antigenic determinants of both A- and B-antigens from some of the linkages on RBC surface glycans, through several rounds of evolution, we developed variants with vastly improved activity toward some of the linkages that are resistant to cleavage by the wild-type enzyme. The resulting enzyme effects more complete removal of blood group antigens from cell surfaces, demonstrating the potential for engineering enzymes to generate antigen-null blood from donors of various types.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Antígenos de Grupos Sanguíneos/química , Configuração de Carboidratos , Sequência de Carboidratos , Eritrócitos/química , Eritrócitos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Polissacarídeos/química , Streptococcus pneumoniae/enzimologia
14.
Proc Natl Acad Sci U S A ; 111(49): E5312-20, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422425

RESUMO

The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.


Assuntos
Eritrócitos/metabolismo , Hemólise , Polissacarídeos/química , Estreptolisinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Carboidratos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citometria de Fluxo , Glicolipídeos/química , Humanos , Antígenos CD15/química , Dados de Sequência Molecular , Mutagênese , Oligossacarídeos/química , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
15.
PLoS Pathog ; 10(9): e1004364, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210925

RESUMO

Bacterial cell-surface proteins play integral roles in host-pathogen interactions. These proteins are often architecturally and functionally sophisticated and yet few studies of such proteins involved in host-pathogen interactions have defined the domains or modules required for specific functions. Streptococcus pneumoniae (pneumococcus), an opportunistic pathogen that is a leading cause of community acquired pneumonia, otitis media and bacteremia, is decorated with many complex surface proteins. These include ß-galactosidase BgaA, which is specific for terminal galactose residues ß-1-4 linked to glucose or N-acetylglucosamine and known to play a role in pneumococcal growth, resistance to opsonophagocytic killing, and adherence. This study defines the domains and modules of BgaA that are required for these distinct contributions to pneumococcal pathogenesis. Inhibitors of ß-galactosidase activity reduced pneumococcal growth and increased opsonophagocytic killing in a BgaA dependent manner, indicating these functions require BgaA enzymatic activity. In contrast, inhibitors increased pneumococcal adherence suggesting that BgaA bound a substrate of the enzyme through a distinct module or domain. Extensive biochemical, structural and cell based studies revealed two newly identified non-enzymatic carbohydrate-binding modules (CBMs) mediate adherence to the host cell surface displayed lactose or N-acetyllactosamine. This finding is important to pneumococcal biology as it is the first adhesin-carbohydrate receptor pair identified, supporting the widely held belief that initial pneumococcal attachment is to a glycoconjugate. Perhaps more importantly, this is the first demonstration that a CBM within a carbohydrate-active enzyme can mediate adherence to host cells and thus this study identifies a new class of carbohydrate-binding adhesins and extends the paradigm of CBM function. As other bacterial species express surface-associated carbohydrate-active enzymes containing CBMs these findings have broad implications for bacterial adherence. Together, these data illustrate that comprehending the architectural sophistication of surface-attached proteins can increase our understanding of the different mechanisms by which these proteins can contribute to bacterial pathogenesis.


Assuntos
Aderência Bacteriana , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/enzimologia , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Humanos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Conformação Proteica , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
16.
J Mol Biol ; 426(7): 1469-82, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24333485

RESUMO

Fucose metabolism pathways are present in many bacterial species and typically contain the central fucose-processing enzymes fucose isomerase (FcsI), fuculose kinase (FcsK), and fuculose-1-phosphate aldolase (FcsA). Fucose initially undergoes isomerization by FcsI producing fuculose, which is then phosphorylated by FcsK. FcsA cleaves the fuculose-1-phosphate product into lactaldehyde and dihydroxyacetone phosphate, which can be incorporated into central metabolism allowing the bacterium to use fucose as an energy source. Streptococcus pneumoniae has fucose-processing operons containing homologs of FcsI, FcsK, and FcsA; however, this bacterium appears unable to utilize fucose as an energy source. To investigate this contradiction, we performed biochemical and structural studies of the S. pneumoniae fucose-processing enzymes SpFcsI, SpFcsK, and SpFcsA. These enzymes are demonstrated to act in a sequential manner to ultimately produce dihydroxyacetone phosphate and have structural features entirely consistent with their observed biochemical activities. Analogous to the regulation of the Escherichia coli fucose utilization operon, fuculose-1-phosphate appears to act as an inducing molecule for activation of the S. pneumoniae fucose operon. Despite our evidence that S. pneumoniae appears to have the appropriate regulatory and biochemical machinery for fucose metabolism, we confirmed the inability of the S. pneumoniae TIGR4 strain to grow on fucose or on the H-disaccharide, which is the probable substrate of the transporter for the pathway. On the basis of these observations, we postulate that the S. pneumoniae fucose-processing pathway has a non-metabolic role in the interaction of this bacterium with its human host.


Assuntos
Fucose/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Hexosefosfatos/metabolismo , Isomerases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estrutura Secundária de Proteína
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1524-30, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139157

RESUMO

Streptococcus pneumoniae relies on a variety of carbohydrate-utilization pathways for both colonization of its human host and full virulence during the development of invasive disease. One such pathway is the fucose-utilization pathway, a component of which is fucose mutarotase (SpFcsU), an enzyme that performs the interconversion between α-L-fucose and ß-L-fucose. This protein was crystallized and its three-dimensional structure was solved in complex with L-fucose. The structure shows a complex decameric quaternary structure with a high overall degree of structural identity to Escherichia coli FcsU (EcFcsU). Furthermore, the active-site architecture of SpFcsU is highly similar to that of EcFcsU. When considered in the context of the fucose-utilization pathway found in S. pneumoniae, SpFcsU appears to link the two halves of the pathway by enhancing the rate of conversion of the product of the final glycoside hydrolysis step, ß-fucose, into the substrate for the fucose isomerase, α-fucose.


Assuntos
Carboidratos Epimerases/química , Fucose/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Animais , Carboidratos Epimerases/metabolismo , Cristalografia por Raios X , Fucose/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
18.
Structure ; 19(11): 1603-14, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22078560

RESUMO

The complete degradation of N-linked glycans by the pathogenic bacterium Streptococcus pneumoniae is facilitated by the large multimodular cell wall-attached exo-ß-D-N-acetylglucosaminidase StrH. Structural dissection of this virulence factor using X-ray crystallography showed it to have two structurally related glycoside hydrolase family 20 catalytic domains, which displayed the expected specificity for complex N-glycans terminating in N-acetylglucosamine but exhibited unexpected differences in their preferences for the substructures present in these glycans. The structures of the two catalytic domains in complex with unhydrolyzed substrates, including an N-glycan possessing a bisecting N-acetylglucosamine residue, revealed the specific architectural features in the active sites that confer their differential specificities. Inhibitors of StrH are demonstrated to be effective tools in modulating the interaction of StrH with components of the host, such as the innate immune system. Overall, new structural and functional insight into a carbohydrate-mediated component of the pneumococcus-host interaction is provided.


Assuntos
Proteínas de Bactérias/química , Polissacarídeos/química , Streptococcus pneumoniae , Fatores de Virulência/química , Proteínas de Bactérias/antagonistas & inibidores , Configuração de Carboidratos , Sequência de Carboidratos , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Interações Hospedeiro-Patógeno , Ligação de Hidrogênio , Hidrólise , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Streptococcus pneumoniae/efeitos dos fármacos , Propriedades de Superfície , Fatores de Virulência/antagonistas & inibidores
19.
J Mol Biol ; 411(5): 1017-36, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21767550

RESUMO

The TIGR4 and SP3-BS71 strains of Streptococcus pneumoniae each produce family 98 glycoside hydrolases, called Sp4GH98 and Sp3GH98, respectively, which have different modular architectures and substrate specificities. Sp4GH98 degrades the Lewis(Y) antigen and possesses three C-terminal family 47 carbohydrate-binding modules (CBMs) that bind to this substrate. Sp3GH98 degrades the blood group A/B antigens and has two N-terminal family 51 CBMs that are of unknown function. Here, we examine the complex carbohydrate-binding specificity of the family 51 CBMs from Sp3GH98 (referred to as CBM51-1 and CBM51-2), the structural basis of this interaction, and the overall solution conformations of both Sp3GH98 and Sp4GH98, which are shown to be fully secreted proteins. Through glycan microarray binding analysis and isothermal titration calorimetry, CBM51-1 is found to bind specifically to the blood group A/B antigens. However, due to a series of relatively small structural rearrangements that were revealed in structures determined by X-ray crystallography, CBM51-2 appears to be incapable of binding carbohydrates. Analysis of small-angle X-ray scattering data in combination with the available high-resolution X-ray crystal structures of the Sp3GH98 and Sp4GH98 catalytic modules and their CBMs yielded models of the biological solution structures of the full-length enzymes. These studies reveal the complex architectures of the two enzymes and suggest that carbohydrate recognition by the CBMs and the activity of the catalytic modules are not directly coupled.


Assuntos
Carboidratos/imunologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Receptores de Superfície Celular/metabolismo , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Receptores de Superfície Celular/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Structure ; 19(5): 640-51, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21565699

RESUMO

SpuA is a large multimodular cell wall-attached enzyme involved in the degradation of glycogen by the pathogenic bacterium Streptococcus pneumoniae. The deletion of the gene encoding SpuA from the bacterium resulted in a strain with reduced competitiveness in a mouse model of virulence relative to the parent strain, linking the degradation of host-glycogen to the virulence of the bacterium. Through the combined use of X-ray crystallography, small-angle X-ray scattering, and inhibitor binding, the molecular features involved in substrate recognition by this complex protein are revealed. This uniquely illustrates the complexity of the active site, the conformational changes incurred during carbohydrate binding by this protein, and the interaction and cooperation of its composite modules during this process. New insight into the function of this particular pneumococcal virulence factor is provided along with substantial contributions to the nascent framework for understanding the structural and functional interplay between modules in multimodular carbohydrate-active enzymes.


Assuntos
Proteínas de Bactérias/química , Glicogênio , Glicosídeo Hidrolases/química , Complexos Multiproteicos/química , Infecções Pneumocócicas/microbiologia , Proteínas Recombinantes/química , Streptococcus pneumoniae , Fatores de Virulência/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , Glicogênio/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Infecções Pneumocócicas/patologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...