Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(13): 11135-11142, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521086

RESUMO

Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities. Monochiral (6,5) SWNT films as working electrodes exhibit a narrow absorption band at 997 nm (full width at half-maximum of 55-73 nm) with voltage-dependent optical densities between 0.2 and 4.5 and a modulation depth of up to 43 dB. These (6,5) SWNT notch filters can retain more than 95% of maximum bleaching for several hours under open-circuit conditions. In addition, different levels of transmission can be set by applying constant low voltage (1.5 V) pulses with modulated width or by a given number of fixed short pulses.

2.
ACS Nano ; 10(3): 3702-13, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26937766

RESUMO

This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PEDOT: PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PEDOT: PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

3.
J Vis Exp ; (118)2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28060312

RESUMO

We summarize recent advances in the production of liquid-exfoliated transition metal dichalcogenide (TMD) nanosheets with controlled size and thickness. Layered crystals of molybdenum disulphide (MoS2) and tungsten disulphide (WS2) are exfoliated in aqueous surfactant solution by sonication. This yields highly polydisperse mixtures containing nanosheets with broad size and thickness distributions. However, for most purposes, specific sizes (in terms of both lateral dimension and thickness) are required. For example, large and thin nanosheets are desired for (opto) electronic applications, while laterally small nanosheets are interesting for catalytic applications. Therefore, post-exfoliation size selection is an important step that we address here. We provide a detailed protocol on the efficient size selection in large quantities by liquid cascade centrifugation and the size and thickness quantification by statistical microscopic analysis (atomic force microscopy and transmission electron microscopy). The comparison of MoS2 and WS2 shows that both materials are size-selected in a similar way by the same procedure. Importantly, the dispersions of size-selected nanosheets show systematic changes in their optical extinction spectra with size due to edge and confinement effects. We show how these optical changes are related quantitatively to the nanosheets dimensions and describe how mean nanosheets length and layer number can be extracted reliably from the extinction spectra. The exfoliation and size selection protocol can be applied to a broad range of layered crystals as we have previously demonstrated for graphene, gallium sulphide (GaS) and black phosphorus.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanoestruturas , Compostos de Tungstênio/química , Grafite , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Sonicação , Tensoativos
4.
ACS Appl Mater Interfaces ; 7(30): 16495-506, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26177473

RESUMO

This work describes the potential of thin, spray-deposited, large-area poly(3,4-ethylenedioxythiophene)/poly(styrene-4-sulfonate) ( PEDOT: PSS) conducting polymer films for use as transparent supercapacitor electrodes. To facilitate this, we provide a detailed explanation of the factors limiting the performance of such electrodes. These films have a very low optical conductivity of σop = 24 S/cm (at 550 nm), crucial for this application, and a reasonable volumetric capacitance of CV = 41 F/cm(3). Secondary doping with formic acid gives these films a DC conductivity of σDC = 936 S/cm, allowing them to perform both as a transparent conductor/current collector and transparent supercapacitor electrode. Small-area films (A ∼ 1 cm(2)) display measured areal capacitance as high as 1 mF/cm(2), even for reasonably transparent electrodes (T ∼ 80%). However, in real devices, the absolute capacitance will be maximized by increasing the device area. As such, here, we measure the electrode performance as a function of its length and width. We find that the measured areal capacitance falls dramatically with scan rate and sample length but is independent of width. We show that this is because the measured areal capacitance is limited by the electrical resistance of the electrode. We have derived an equation for the measured areal capacitance as a function of scan rate and electrode lateral dimensions that fits the data extremely well up to scan rates of ∼1000 mV/s (corresponding to charge/discharge times > 0.6 s). These results are self-consistent with independent analysis of the electrical and impedance properties of the electrodes. These results can be used to find limiting combinations of electrode length and scan rate, beyond which electrode performance falls dramatically. We use these insights to build large-area (∼100 cm(2)) supercapacitors using electrodes that are 95% transparent, providing a capacitance of ∼12 mF (at 50 mV/s), significantly higher than that of any previously reported transparent supercapacitor.

5.
ACS Nano ; 8(9): 9567-79, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25199042

RESUMO

Here we demonstrate significant improvements in the performance of supercapacitor electrodes based on 2D MnO2 nanoplatelets by the addition of carbon nanotubes. Electrodes based on MnO2 nanoplatelets do not display high areal capacitance because the electrical properties of such films are poor, limiting the transport of charge between redox sites and the external circuit. In addition, the mechanical strength is low, limiting the achievable electrode thickness, even in the presence of binders. By adding carbon nanotubes to the MnO2-based electrodes, we have increased the conductivity by up to 8 orders of magnitude, in line with percolation theory. The nanotube network facilitates charge transport, resulting in large increases in capacitance, especially at high rates, around 1 V/s. The increase in MnO2 specific capacitance scaled with nanotube content in a manner fully consistent with percolation theory. Importantly, the mechanical robustness was significantly enhanced, allowing the fabrication of electrodes that were 10 times thicker than could be achieved in MnO2-only films. This resulted in composite films with areal capacitances up to 40 times higher than could be achieved with MnO2-only electrodes.

6.
ACS Nano ; 6(2): 1732-41, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22224622

RESUMO

We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

7.
Nanomaterials (Basel) ; 1(1): 3-19, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348277

RESUMO

The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay-carbon nanotube-chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay-CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay-CNT materials decreases, whereas that of clay-CNT-chitosan increases.

8.
ACS Nano ; 3(7): 1767-74, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19552383

RESUMO

We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 µm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...