Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Magn Part Imaging ; 6(2 Suppl 1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34124341

RESUMO

Thermometry based on magnetic nanoparticles (MNPs) is an emerging technology that allows for remote temperature measurements throughout a volume that are impossible to achieve using conventional probe-based or optical methods. This metrology is based on the temperature-dependent nature of these particles' magnetization; however, commercially available MNPs generally display insufficient magneto-thermosensitivity for practical use in applications near room temperature. Here we present engineered MNPs based on cobalt-doped ferrites developed for 200 K - 400 K thermometry applications. The synthesis relies on easily scalable solution chemistry routes, and is tunable to afford MNPs of controlled size and composition. These improved nanothermometers form the basis of our effort to develop a practical means for spatially resolved, 3D, high-sensitivity measurements of temperature based on AC magnetometry.

2.
Nanoscale ; 9(7): 2531-2540, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28150840

RESUMO

We introduce a new procedure for the efficient isolation and subsequent separation of double-wall carbon nanotubes (DWCNTs). A simplified, rate zonal ultracentrifugation (RZU) process is first applied to obtain samples of highly-enriched DWCNTs from a raw carbon nanotube material that has both single- and double-wall carbon nanotubes. Using this purified DWCNT suspension, we demonstrate for the first time that DWCNTs can be further processed using aqueous two-phase extraction (ATPE) for sequential separation by electronic structure and diameter. Additionally, we introduce analytical ultracentrifugation (AUC) as a new method for DWCNT characterization to assess DWCNT purity in separated samples. Results from AUC analysis are utilized to compare two DWCNT separation schemes. We find that RZU processing followed by sequential bandgap and diameter sorting via ATPE provides samples of highest DWCNT enrichment, whereas single-step redox sorting of the same raw material through ATPE yields SWCNT/DWCNT mixtures of similar diameter and electronic character. The presented methods offer significant advancement in DWCNT processing and separation while also providing a promising alternative for DWCNT sample analysis.

3.
Nanoscale Horiz ; 1(4): 317-324, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32260652

RESUMO

Chemical control of the endohedral volume of single-wall carbon nanotubes (SWCNTs) via liquid-phase filling is established to be a facile strategy to controllably modify properties of SWCNTs in manners significant for processing and proposed applications. Encapsulation of over 20 different compounds with distinct chemical structures, functionalities, and effects is demonstrated in SWCNTs of multiple diameter ranges, with the ability to fill the endohedral volume based on the availability of the core volume and compatibility of the molecule's size with the cross-section of the nanotube's cavity. Through exclusion of ingested water and selection of the endohedral chemical environment, significant improvements to the optical properties of dispersed SWCNTs such as narrowed optical transition linewidths and enhanced fluorescence intensities are observed. Examples of tailoring modified properties towards applications or improved processing by endohedral passivation are discussed.

4.
Anal Chem ; 86(12): 5800-6, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24896231

RESUMO

Ultrasensitive and quantitative detection of cancer biomarkers is an unmet challenge because of their ultralow concentrations in clinical samples. Although gold nanoparticle (AuNP)-based immunoassays offer high sensitivity, they were unable to quantitatively detect targets of interest most likely due to their very narrow linear ranges. This article describes a quantitative colorimetric immunoassay based on glucose oxidase (GOx)-catalyzed growth of 5 nm AuNPs that can detect cancer biomarkers from attomolar to picomolar levels. In addition, the limit of detection (LOD) of prostate-specific antigen (PSA) of this approach (93 aM) exceeds that of commercial enzyme-linked immunosorbent assay (ELISA) (6.3 pM) by more than 4 orders of magnitude. The emergence of red or purple color based on enzyme-catalyzed growth of 5 nm AuNPs in the presence of target antigen is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings.


Assuntos
Biomarcadores Tumorais/metabolismo , Glucose Oxidase/metabolismo , Ouro/química , Nanopartículas Metálicas , Catálise , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Limite de Detecção , Microscopia Eletrônica de Transmissão
6.
Anal Bioanal Chem ; 396(3): 1057-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19841909

RESUMO

A colloidal synthesis method was developed to produce face centered cubic (fcc) Cu nanoparticles in the presence of surfactants in an organic solvent under an Ar environment. Various synthetic conditions were explored to control the size of the as-prepared nanoparticles by changing the precursor, varying the amount of surfactants, and tuning the reaction temperature. Transmission electron microscopy (TEM), selected-area electron diffraction, and high-resolution TEM were used as the main characterization tools. Upon exposure to air, these nanoparticles are oxidized at different levels depending on their sizes: (1) an inhomogeneous layer of fcc Cu(2)O forms at the surface of Cu nanoparticles (about 30 nm); (2) Cu nanoparticles (about 5 nm) are immediately oxidized into fcc Cu(2)O nanoparticles (about 6 nm). The occurrence of these different levels of oxidization demonstrates the reactive nature of Cu nanoparticles and the effect of size on their reactivity. Furthermore, utilization of their chemical reactivity and conversion of spherical Cu nanoparticles into CuS nanoplates through the nanoscale Kirkendall effect were demonstrated. The oxidization and sulfidation of Cu nanoparticles were compared. Different diffusion and growth behaviors were involved in these two chemical transformations, resulting in the formation of isotropic Cu(2)O nanoparticles during oxidization and anisotropic CuS nanoplates during sulfidation.


Assuntos
Cobre/química , Nanopartículas/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Tensoativos
7.
Langmuir ; 21(26): 12055-9, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16342969

RESUMO

Under the influence of a 0.05 T magnetic field, 15-nm diameter cobalt nanoparticles covered with surfactants in a colloidal solution assemble into highly constrained linear chains along the direction of the magnetic field. The magnetic-field-induced (MFI) chains become floppy after removal of the field, folding into three-dimensional (3D) coiled structures upon gentle agitation. The 3D structures are broken into smaller units with vigorous agitation. The nanoparticles redisperse into the solvent upon ultrasonic agitation. Optical microscopy and transmission electron microscopy (TEM) are used to characterize the morphologies of the nanoparticle assemblies at various stages of this reversible process. The hysteresis loops and zero-field cooled/field cooled (ZFC/FC) curves reveal the interparticle coupling in the assemblies. MFI assembly provides a powerful tool to manipulate magnetic nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...