Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 179, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915001

RESUMO

With the outbreak of COVID-19 in 2020, countries worldwide faced significant concerns and challenges. Various studies have emerged utilizing Artificial Intelligence (AI) and Data Science techniques for disease detection. Although COVID-19 cases have declined, there are still cases and deaths around the world. Therefore, early detection of COVID-19 before the onset of symptoms has become crucial in reducing its extensive impact. Fortunately, wearable devices such as smartwatches have proven to be valuable sources of physiological data, including Heart Rate (HR) and sleep quality, enabling the detection of inflammatory diseases. In this study, we utilize an already-existing dataset that includes individual step counts and heart rate data to predict the probability of COVID-19 infection before the onset of symptoms. We train three main model architectures: the Gradient Boosting classifier (GB), CatBoost trees, and TabNet classifier to analyze the physiological data and compare their respective performances. We also add an interpretability layer to our best-performing model, which clarifies prediction results and allows a detailed assessment of effectiveness. Moreover, we created a private dataset by gathering physiological data from Fitbit devices to guarantee reliability and avoid bias.The identical set of models was then applied to this private dataset using the same pre-trained models, and the results were documented. Using the CatBoost tree-based method, our best-performing model outperformed previous studies with an accuracy rate of 85% on the publicly available dataset. Furthermore, this identical pre-trained CatBoost model produced an accuracy of 81% when applied to the private dataset. You will find the source code in the link: https://github.com/OpenUAE-LAB/Covid-19-detection-using-Wearable-data.git .


Assuntos
Inteligência Artificial , COVID-19 , Diagnóstico Precoce , Humanos , COVID-19/diagnóstico , Frequência Cardíaca/fisiologia , Dispositivos Eletrônicos Vestíveis
2.
Sci Rep ; 14(1): 13678, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871820

RESUMO

Comprehending digital content written in natural language online is vital for many aspects of life, including learning, professional tasks, and decision-making. However, facing comprehension difficulties can have negative consequences for learning outcomes, critical thinking skills, decision-making, error rate, and productivity. This paper introduces an innovative approach to predict comprehension difficulties at the local content level (e.g., paragraphs). Using affordable wearable devices, we acquire physiological responses non-intrusively from the autonomous nervous system, specifically pulse rate variability, and electrodermal activity. Additionally, we integrate data from a cost-effective eye-tracker. Our machine learning algorithms identify 'hotspots' within the content and regions corresponding to a high cognitive load. These hotspots represent real-time predictors of comprehension difficulties. By integrating physiological data with contextual information (such as the levels of experience of individuals), our approach achieves an accuracy of 72.11% ± 2.21, a precision of 0.77, a recall of 0.70, and an f1 score of 0.73. This study opens possibilities for developing intelligent, cognitive-aware interfaces. Such interfaces can provide immediate contextual support, mitigating comprehension challenges within content. Whether through translation, content generation, or content summarization using available Large Language Models, this approach has the potential to enhance language comprehension.


Assuntos
Compreensão , Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Humanos , Compreensão/fisiologia , Feminino , Masculino , Adulto , Algoritmos , Adulto Jovem , Cognição/fisiologia , Frequência Cardíaca/fisiologia
3.
Diagnostics (Basel) ; 13(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835814

RESUMO

Despite the declining COVID-19 cases, global healthcare systems still face significant challenges due to ongoing infections, especially among fully vaccinated individuals, including adolescents and young adults (AYA). To tackle this issue, cost-effective alternatives utilizing technologies like Artificial Intelligence (AI) and wearable devices have emerged for disease screening, diagnosis, and monitoring. However, many AI solutions in this context heavily rely on supervised learning techniques, which pose challenges such as human labeling reliability and time-consuming data annotation. In this study, we propose an innovative unsupervised framework that leverages smartwatch data to detect and monitor COVID-19 infections. We utilize longitudinal data, including heart rate (HR), heart rate variability (HRV), and physical activity measured via step count, collected through the continuous monitoring of volunteers. Our goal is to offer effective and affordable solutions for COVID-19 detection and monitoring. Our unsupervised framework employs interpretable clusters of normal and abnormal measures, facilitating disease progression detection. Additionally, we enhance result interpretation by leveraging the language model Davinci GPT-3 to gain deeper insights into the underlying data patterns and relationships. Our results demonstrate the effectiveness of unsupervised learning, achieving a Silhouette score of 0.55. Furthermore, validation using supervised learning techniques yields high accuracy (0.884 ± 0.005), precision (0.80 ± 0.112), and recall (0.817 ± 0.037). These promising findings indicate the potential of unsupervised techniques for identifying inflammatory markers, contributing to the development of efficient and reliable COVID-19 detection and monitoring methods. Our study shows the capabilities of AI and wearables, reflecting the pursuit of low-cost, accessible solutions for addressing health challenges related to inflammatory diseases, thereby opening new avenues for scalable and widely applicable health monitoring solutions.

4.
Front Neurosci ; 16: 1065366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36825214

RESUMO

Complexity is the key element of software quality. This article investigates the problem of measuring code complexity and discusses the results of a controlled experiment to compare different views and methods to measure code complexity. Participants (27 programmers) were asked to read and (try to) understand a set of programs, while the complexity of such programs is assessed through different methods and perspectives: (a) classic code complexity metrics such as McCabe and Halstead metrics, (b) cognitive complexity metrics based on scored code constructs, (c) cognitive complexity metrics from state-of-the-art tools such as SonarQube, (d) human-centered metrics relying on the direct assessment of programmers' behavioral features (e.g., reading time, and revisits) using eye tracking, and (e) cognitive load/mental effort assessed using electroencephalography (EEG). The human-centered perspective was complemented by the subjective evaluation of participants on the mental effort required to understand the programs using the NASA Task Load Index (TLX). Additionally, the evaluation of the code complexity is measured at both the program level and, whenever possible, at the very low level of code constructs/code regions, to identify the actual code elements and the code context that may trigger a complexity surge in the programmers' perception of code comprehension difficulty. The programmers' cognitive load measured using EEG was used as a reference to evaluate how the different metrics can express the (human) difficulty in comprehending the code. Extensive experimental results show that popular metrics such as V(g) and the complexity metric from SonarSource tools deviate considerably from the programmers' perception of code complexity and often do not show the expected monotonic behavior. The article summarizes the findings in a set of guidelines to improve existing code complexity metrics, particularly state-of-the-art metrics such as cognitive complexity from SonarSource tools.

5.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960517

RESUMO

Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks: an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users' daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either "potentially COVID-19 infected" or "no evident signs of infection". We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Humanos , SARS-CoV-2 , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...