Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(10): 1494-1505, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37747298

RESUMO

The differentiation of neural crest (NC) cells into various cell lineages contributes to the formation of many organs, including the thymus. In this study, we explored the role of NC cells in thymic T cell development. In double-transgenic mice expressing NC-specific Cre and the Cre-driven diphtheria toxin receptor, plasma noradrenaline and adrenaline levels were significantly reduced, as were thymic T cell progenitors, when NC-derived cells were ablated with short-term administration of diphtheria toxin. Additionally, yellow fluorescent protein+ NC-derived mesenchymal cells, perivascular cells, and tyrosine hydroxylase+ sympathetic nerves in the thymus significantly decreased. Furthermore, i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, resulted in a significant decrease in thymic tyrosine hydroxylase+ nerves, a phenotype similar to that of depleted NC-derived cells, whereas administration of a noradrenaline precursor for ablating NC-derived cells or sympathetic nerves rarely rescued this phenotype. To clarify the role of NC-derived cells in the adult thymus, we transplanted thymus into the renal capsules of wild-type mice and observed abnormal T cell development in lethally irradiated thymus with ablation of NC-derived cells or sympathetic nerves, suggesting that NC-derived cells inside and outside of the thymus contribute to T cell development. In particular, the ablation of NC-derived mesenchymal cells in the thymus decreases the number of thymocytes and T cell progenitors. Overall, ablation of NC-derived cells, including sympathetic nerves, in the thymus leads to abnormal T cell development in part by lowering plasma noradrenalin levels. This study reveals that NC-derived cells including mesenchymal cells and sympathetic nerves within thymus regulate T cell development.


Assuntos
Crista Neural , Norepinefrina , Camundongos , Animais , Tirosina 3-Mono-Oxigenase , Diferenciação Celular , Camundongos Transgênicos , Timo
2.
Int Immunol ; 31(2): 69-79, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30299470

RESUMO

Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.


Assuntos
Mastócitos/imunologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Receptores Notch/imunologia , Animais , Adesão Celular/imunologia , Células Cultivadas , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Biochem Biophys Rep ; 10: 224-231, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955750

RESUMO

Allergic conditions result in the increase of immunoglobulin (Ig)E-producing plasma cells (IgE-PCs); however, it is unclear how IgE production is qualitatively controlled. In this study, we found that IgE-PCs in spleen of immunized mice formed homotypic cell aggregates. By employing IgE-producing hybridomas (IgE-hybridomas) as a model of IgE-PCs, we showed that these cells formed aggregates in the presence of specific antigens (Ags). The formation of the Ag-induced cell aggregation involved secreted IgE and Fcγ receptor (FcγR)II/FcγRIII, but not FcεRs. Ag-induced cell aggregation plus lipopolysaccharide signaling resulted in an enhancement of IgE production in aggregated IgE-hybridomas. Furthermore, the administration of anti-FcγRII/FcγRIII antagonistic monoclonal antibody to immunized mice tended to reduce the splenic IgE-PC aggregation as well as the serum IgE levels. Taken together, our results suggested that Ag-IgE complexes induced IgE-PCs aggregation via FcγRII/FcγRIII, leading to the enhancement of IgE production. These findings suggest the presence of a novel mechanism for regulation of IgE production.

4.
PLoS One ; 9(9): e108535, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255288

RESUMO

Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.


Assuntos
Moléculas de Adesão Celular/metabolismo , Receptores Notch/metabolismo , Animais , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Mastócitos/metabolismo , Camundongos , Ligação Proteica , Receptores Notch/genética , Transdução de Sinais , Células Estromais/metabolismo
5.
Biochem Biophys Res Commun ; 428(2): 303-8, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23085228

RESUMO

Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.


Assuntos
Diferenciação Celular , Macrófagos/citologia , Osteoclastos/citologia , Animais , Linhagem Celular , Linhagem da Célula , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...