Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(12)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371066

RESUMO

The costimulatory signal regulated by the members of the tumor necrosis factor receptor (TNFR) superfamily expressed by T cells plays essential roles for T cell responses and has emerged as a promising target for cancer immunotherapy. However, it is unclear how the difference in TNFR costimulation contributes to T cell responses. In this study, to clarify the functional significance of four different TNFRs, OX40, 4-1BB, CD27 and GITR, we prepared corresponding single-chain TNF ligand proteins (scTNFLs) connected to IgG Fc domain with beneficial characteristics, i.e., Fc-scOX40L, Fc-sc4-1BBL, Fc-scCD27L (CD70) and Fc-scGITRL. Without intentional cross-linking, these soluble Fc-scTNFL proteins bound to corresponding TNFRs induced NF-kB signaling and promoted proliferative and cytokine responses in CD4+ and CD8+ T cells with different dose-dependencies in vitro. Mice injected with one of the Fc-scTNFL proteins displayed significantly augmented delayed-type hypersensitivity responses, showing in vivo activity. The results demonstrate that each individual Fc-scTNFL protein provides a critical costimulatory signal and exhibits quantitatively distinct activity toward T cells. Our findings provide important insights into the TNFR costimulation that would be valuable for investigators conducting basic research in cancer immunology and also have implications for T cell-mediated immune regulation by designer TNFL proteins.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Receptores do Fator de Necrose Tumoral/metabolismo , Citocinas/metabolismo , Proteínas Recombinantes/metabolismo , Neoplasias/metabolismo
2.
Cell Mol Life Sci ; 79(3): 159, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35224692

RESUMO

Yolk sac (YS) CSF1 receptor positive (CSF1R+) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid-myeloid progenitors (EMPs). However, diverse types of hematopoietic progenitors are present in the early YS, thus it is not precisely known which type of hematopoietic cell gives rise to the CSF1R+ lineage. In this study, an analysis was conducted to determine when CSF1R+ progenitors appeared in the early YS. It showed that CSF1R+ cells appeared in the YS as early as embryonic day 9 (E9) and that the earliest hematopoietic progenitors that differentiate into CSF1R+ cells were found in E8. Since these progenitors possessed the capability to generate primitive erythroid cells, it was likely that primitive erythroid lineages shared progenitors with the CSF1R+ lineage. Mutual antagonism appears to work between PU.1 and GATA1 when CSF1R+ cells appear in the early YS. One day later (E9), multiple progenitors, including myeloid-restricted progenitors and multipotent progenitors, in the YS could immediately generate CSF1R+ cells. These results suggest that EMPs are not an exclusive source for the CSF1R+ lineage; rather, multiple hematopoietic cell populations give rise to CSF1R+ lineage in the early YS.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Macrófagos , Saco Vitelino/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Feminino , Camundongos , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/fisiologia
3.
Immunol Lett ; 243: 53-60, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167919

RESUMO

Follicular dendritic cells (FDCs) are non-hematopoietic cells that are localized in the germinal centers (GCs) of lymph nodes (LNs) and are involved in humoral immunity. FDCs are a rare population that are sensitive to mechanical and chemical stimuli, making their isolation for analysis difficult. In Peyer's Patches, which are the main IgA-inductive sites, FDCs have been reported to be activated by retinoic acid receptor (RAR) and toll-like receptor (TLR) signals to induce IgA production. However, little is known about FDCs in mesenteric LNs (MLNs), although MLNs are also an IgA-inductive site. In this study, we efficiently isolated FDCs as CD35+ cells using anti-CD35 antibodies (Abs) and magnetic bead sorting. We found that CD35+ FDCs facilitated differentiation from B220+ B cells into IgA+GL7+ GC B-like cells but not IgA+CD138+ plasma cells. Furthermore, using CD35+ FDCs from LPS-resistant C3H/HeJ mice, the generation of IgA+GL7+ GC B-like cells was not altered significantly between wild-type and LPS-resistant mice. Moreover, the addition of RAR antagonists and agonists revealed that differentiation into IgA+GL7+ GC B-like cells required the activation of RAR, especially RAR-ß, in FDCs. The differentiation of IgA+GL7+ cells was promoted by FDCs in peripheral LNs as well as MLNs in our in vitro assay. Taken together, these results indicate that magnetic bead sorting with anti-CD35 Abs enable the efficient isolation of FDCs. Our data suggested that CD35+ FDCs can support differentiation of B cells into IgA+GL7+ GC B-like cells in environments that are not limited to MLNs, which can be stimulated by retinoic acid.


Assuntos
Células Dendríticas Foliculares , Lipopolissacarídeos , Animais , Centro Germinativo , Imunoglobulina A , Camundongos , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...