Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Polym Au ; 2(1): 35-41, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855742

RESUMO

Functionalization-induced phase transitions in polymer systems in which a postpolymerization reaction drives polymers to organize into colloidal aggregates are a versatile method to create nanoscale structures with applications related to biomedicine and nanoreactors. Current functionalization methods to stimulate polymer self-assembly are based on covalent bond formation. Therefore, there is a need to explore alternative reactions that result in noncovalent bond formation. Here, we demonstrate that when the Lewis acid, tris(pentafluorophenyl) borane (BCF), is added to a solution containing poly(4-diphenylphosphino styrene) (PDPPS), the system will either macrophase-separate or form micelles if PDPPS is a homopolymer or a block in a copolymer, respectively. The Lewis adduct-induced phase transition is hypothesized to result from the favorable interaction between the PDPPS and BCF, which results in a negative interaction parameter (χ). A modified Flory-Huggins model was used to determine the predicted phase behavior for a ternary system composed of a polymer, a solvent, and a small molecule. The model indicates that there is a demixing region (i.e., macrophase separation) when the polymer and small molecule have favorable interactions (e.g., χ < 0) and that the phase separation region coincides well with the experimentally determined two-phase region for mixtures containing PDPPS, BCF, and toluene. The work presented here highlights that Lewis adduct-induced phase separation is a new approach to functionalization-induced self-assembly (FISA) and that ternary mixtures will undergo phase separation if two of the components exhibit a sufficiently negative χ.

2.
Biochemistry ; 58(30): 3280-3292, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283204

RESUMO

Guanine deaminase is a metabolic enzyme, found in all forms of life, which catalyzes the conversion of guanine to xanthine. Despite the availability of several crystal structures, the molecular determinants of substrate orientation and mechanism remain to be elucidated for the amidohydrolase family of guanine deaminase enzymes. Here, we report the crystal structures of Escherichia coli and Saccharomyces cerevisiae guanine deaminase enzymes (EcGuaD and Gud1, respectively), both members of the amidohydrolase superfamily. EcGuaD and Gud1 retain the overall TIM barrel tertiary structure conserved among amidohydrolase enzymes. Both proteins also possess a single zinc cation with trigonal bipyrimidal coordination geometry within their active sites. We also determined a liganded structure of Gud1 bound to the product, xanthine. Analysis of this structure, along with kinetic data of native and site-directed mutants of EcGuaD, identifies several key residues that are responsible for substrate recognition and catalysis. In addition, after a small library of compounds had been screened, two guanine derivatives, 8-azaguanine and 1-methylguanine, were identified as EcGuaD substrates. Interestingly, both EcGuaD and Gud1 also exhibit secondary ammeline deaminase activity. Overall, this work details key structural features of substrate recognition and catalysis of the amidohydrolase family of guanine deaminase enzymes in support of our long-term goal to engineer these enzymes with altered activity and substrate specificity.


Assuntos
Amidoidrolases/química , Proteínas de Escherichia coli/química , Guanina Desaminase/química , Proteínas de Saccharomyces cerevisiae/química , Amidoidrolases/metabolismo , Domínio Catalítico/fisiologia , Proteínas de Escherichia coli/metabolismo , Guanina Desaminase/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...