Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396055

RESUMO

It is now widely accepted that glia cells and gamma-aminobutyric acidergic (GABA) interneurons dynamically regulate synaptic transmission and neuronal activity in time and space. This paper presents a biophysical model that captures the interaction between an astrocyte cell, a GABA interneuron and pre/postsynaptic neurons. Specifically, GABA released from a GABA interneuron triggers in astrocytes the release of calcium (Ca 2+) from the endoplasmic reticulum via the inositol 1, 4, 5-trisphosphate (IP 3) pathway. This results in gliotransmission which elevates the presynaptic transmission probability rate (PR) causing weight potentiation and a gradual increase in postsynaptic neuronal firing, that eventually stabilizes. However, by capturing the complex interactions between IP 3, generated from both GABA and the 2-arachidonyl glycerol (2-AG) pathway, and PR, this paper shows that this interaction not only gives rise to an initial weight potentiation phase but also this phase is followed by postsynaptic bursting behavior. Moreover, the model will show that there is a presynaptic frequency range over which burst firing can occur. The proposed model offers a novel cellular level mechanism that may underpin both seizure-like activity and neuronal synchrony across different brain regions.

2.
IEEE Trans Neural Netw Learn Syst ; 30(3): 865-875, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072349

RESUMO

It is now known that astrocytes modulate the activity at the tripartite synapses where indirect signaling via the retrograde messengers, endocannabinoids, leads to a localized self-repairing capability. In this paper, a self-repairing spiking astrocyte neural network (SANN) is proposed to demonstrate a distributed self-repairing capability at the network level. The SANN uses a novel learning rule that combines the spike-timing-dependent plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM) learning rules (hereafter referred to as the BSTDP rule). In this learning rule, the synaptic weight potentiation is not only driven by the temporal difference between the presynaptic and postsynaptic neuron firing times but also by the postsynaptic neuron activity. We will show in this paper that the BSTDP modulates the height of the plasticity window to establish an input-output mapping (in the learning phase) and also maintains this mapping (via self-repair) if synaptic pathways become dysfunctional. It is the functional dependence of postsynaptic neuron firing activity on the height of the plasticity window that underpins how the proposed SANN self-repairs on the fly. The SANN also uses the coupling between the tripartite synapses and γ -GABAergic interneurons. This interaction gives rise to a presynaptic neuron frequency filtering capability that serves to route information, represented as spike trains, to different neurons in the subsequent layers of the SANN. The proposed SANN follows a feedforward architecture with multiple interneuron pathways and astrocytes modulate synaptic activity at the hidden and output neuronal layers. The self-repairing capability will be demonstrated in a robotic obstacle avoidance application, and the simulation results will show that the SANN can maintain learned maneuvers at synaptic fault densities of up to 80% regardless of the fault locations.

3.
Front Robot AI ; 5: 87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500966

RESUMO

Despite growing interest in collective robotics over the past few years, analysing and debugging the behaviour of swarm robotic systems remains a challenge due to the lack of appropriate tools. We present a solution to this problem-ARDebug: an open-source, cross-platform, and modular tool that allows the user to visualise the internal state of a robot swarm using graphical augmented reality techniques. In this paper we describe the key features of the software, the hardware required to support it, its implementation, and usage examples. ARDebug is specifically designed with adoption by other institutions in mind, and aims to provide an extensible tool that other researchers can easily integrate with their own experimental infrastructure.

4.
Philos Trans A Math Phys Eng Sci ; 368(1925): 3967-81, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20643688

RESUMO

The project Meeting the Design Challenges of nano-CMOS Electronics (http://www.nanocmos.ac.uk) was funded by the Engineering and Physical Sciences Research Council to tackle the challenges facing the electronics industry caused by the decreasing scale of transistor devices, and the inherent variability that this exposes in devices and in the circuits and systems in which they are used. The project has developed a grid-based solution that supports the electronics design process, incorporating usage of large-scale high-performance computing (HPC) resources, data and metadata management and support for fine-grained security to protect commercially sensitive datasets. In this paper, we illustrate how the nano-CMOS (complementary metal oxide semiconductor) grid has been applied to optimize transistor dimensions within a standard cell library. The goal is to extract high-speed and low-power circuits which are more tolerant of the random fluctuations that will be prevalent in future technology nodes. Using statistically enhanced circuit simulation models based on three-dimensional atomistic device simulations, a genetic algorithm is presented that optimizes the device widths within a circuit using a multi-objective fitness function exploiting the nano-CMOS grid. The results show that the impact of threshold voltage variation can be reduced by optimizing transistor widths, and indicate that a similar method could be extended to the optimization of larger circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...