Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(2): e16271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38265745

RESUMO

PREMISE: Duplicated genes (paralogs) are abundant in plant genomes, and their retention may influence the function of genetic programs and contribute to evolutionary novelty. How gene duplication affects genetic modules and what forces contribute to paralog retention are outstanding questions. The CYCLOIDEA(CYC)-dependent flower symmetry program is a model for understanding the evolution of gene duplication, providing multiple examples of paralog partitioning and novelty. However, a novel CYC gene lineage duplication event near the origin of higher core Lamiales (HCL) has received little attention. METHODS: To understand the evolutionary fate of duplicated HCL CYC2 genes, we determined the effects on flower symmetry by suppressing MlCYC2A and MlCYC2B expression using RNA interference (RNAi). We determined the phenotypic effects on flower symmetry in single- and double-silenced backgrounds and coupled our functional analyses with expression surveys of MlCYC2A, MlCYC2B, and a putative downstream RADIALIS (MlRAD5) ortholog. RESULTS: MlCYC2A and MlCYC2B jointly contribute to bilateral flower symmetry. MlCYC2B exhibits a clear dorsal flower identity function and may additionally function in carpel development. MlCYC2A functions in establishing dorsal petal shape. Further, our results suggest an MlCYC2A-MlCYC2B regulatory interaction, which may affect pathway homeostasis. CONCLUSIONS: Our results suggest that CYC paralogs specific to higher core Lamiales may be selectively retained for their joint contribution to bilateral flower symmetry, similar to the independently derived CYC paralogs in the Lamiales model for bilateral flower symmetry research, Antirrhinum majus (snapdragon).


Assuntos
Antirrhinum , Lamiales , Mimulus , Filogenia , Mimulus/genética , Genes de Plantas , Proteínas de Plantas/genética , Lamiales/genética , Flores , Antirrhinum/genética , Antirrhinum/metabolismo , Regulação da Expressão Gênica de Plantas
2.
PLoS Biol ; 21(9): e3002294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769035

RESUMO

In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-wide dXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 "species-diagnostic loci," which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.


Assuntos
Penstemon , Polinização , Humanos , Abelhas/genética , Animais , Polinização/genética , Néctar de Plantas , Penstemon/genética , Flores/genética , Locos de Características Quantitativas/genética
3.
Evodevo ; 13(1): 3, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093179

RESUMO

BACKGROUND: An outstanding question in evolutionary biology is how genetic interactions defining novel traits evolve. They may evolve either by de novo assembly of previously non-interacting genes or by en bloc co-option of interactions from other functions. We tested these hypotheses in the context of a novel phenotype-Lamiales flower monosymmetry-defined by a developmental program that relies on regulatory interaction among CYCLOIDEA, RADIALIS, DIVARICATA, and DRIF gene products. In Antirrhinum majus (snapdragon), representing Lamiales, we tested whether components of this program likely function beyond their previously known role in petal and stamen development. In Solanum lycopersicum (tomato), representing Solanales which diverged from Lamiales before the origin of Lamiales floral monosymmetry, we additionally tested for regulatory interactions in this program. RESULTS: We found that RADIALIS, DIVARICATA, and DRIF are expressed in snapdragon ovaries and developing fruit, similar to their homologs during tomato fruit development. In addition, we found that a tomato CYCLOIDEA ortholog positively regulates a tomato RADIALIS ortholog. CONCLUSION: Our results provide preliminary support to the hypothesis that the developmental program defining floral monosymmetry in Lamiales was co-opted en bloc from a function in carpel development. This expands our understanding of novel trait evolution facilitated by co-option of existing regulatory interactions.

4.
Am J Bot ; 108(12): 2326-2330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642946
5.
Evol Lett ; 3(5): 521-533, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636944

RESUMO

A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diversification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolutionary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon. Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred, although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is consistent with predicted levels of diversity under stable macroevolutionary rates.

6.
New Phytol ; 223(1): 377-384, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30834532

RESUMO

Evolution of complex phenotypes depends on the adaptive importance of individual traits, and the developmental changes required to modify traits. Floral syndromes are complex adaptations to pollinators that include color, nectar, and shape variation. Hummingbird-adapted flowers have evolved a remarkable number of times from bee-adapted ancestors in Penstemon, and previous work demonstrates that color over shape better distinguishes bee from hummingbird syndromes. Here, we examined the relative importance of nectar volume and nectary development in defining Penstemon pollination syndromes. We tested the evolutionary association of nectar volume and nectary area with pollination syndrome across 19 Penstemon species. In selected species, we assessed cellular-level processes shaping nectary size. Within a segregating population from an intersyndrome cross, we assessed trait correlations between nectar volume, nectary area, and the size of stamens on which nectaries develop. Nectar volume and nectary area displayed an evolutionary association with pollination syndrome. These traits were correlated within a genetic cross, suggesting a mechanistic link. Nectary area evolution involves parallel processes of cell expansion and proliferation. Our results demonstrate that changes to nectary patterning are an important contributor to pollination syndrome diversity and provide further evidence that repeated origins of hummingbird adaptation involve parallel developmental processes in Penstemon.


Assuntos
Adaptação Fisiológica , Penstemon/anatomia & histologia , Néctar de Plantas/fisiologia , Polinização/fisiologia , Característica Quantitativa Herdável , Tamanho Celular , Cruzamentos Genéticos , Flores/fisiologia , Modelos Lineares , Tamanho do Órgão , Filogenia
7.
Front Plant Sci ; 9: 1561, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416508

RESUMO

A common feature in developmental networks is the autoregulation of transcription factors which, in turn, positively or negatively regulate additional genes critical for developmental patterning. When a transcription factor regulates its own expression by binding to cis-regulatory sites in its gene, the regulation is direct transcriptional autoregulation (DTA). Indirect transcriptional autoregulation (ITA) involves regulation by proteins expressed downstream of the target transcription factor. We review evidence for a hypothesized role of DTA in the evolution and development of novel flowering plant phenotypes. We additionally provide new bioinformatic and experimental analyses that support a role for transcriptional autoregulation in the evolution of flower symmetry. We find that 5' upstream non-coding regions are significantly enriched for predicted autoregulatory sites in Lamiales CYCLOIDEA genes-an upstream regulator of flower monosymmetry. This suggests a possible correlation between autoregulation of CYCLOIDEA and the origin of monosymmetric flowers near the base of Lamiales, a pattern that may be correlated with independently derived monosymmetry across eudicot lineages. We find additional evidence for transcriptional autoregulation in the flower symmetry program, and report that Antirrhinum DRIF2 may undergo ITA. In light of existing data and new data presented here, we hypothesize how cis-acting autoregulatory sites originate, and find evidence that such sites (and DTA) can arise subsequent to the evolution of a novel phenotype.

8.
BMC Genomics ; 19(1): 746, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30314445

RESUMO

BACKGROUND: Transgenerational plasticity occurs when the environmental experience of an organism modifies the growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this response have yet to be described. RESULTS: We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and control plants and developed a pipeline to compare differences in the mean and variance of methylation between treatment groups. We find that parental damage increases the variability of CG and CHG methylation among progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously found to be differentially expressed. CONCLUSIONS: Genome-wide increases in methylome variation suggest that parental conditions can increase epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially expressed genes supports the hypothesis that differential methylation is a mechanistic component of transgenerational plasticity in M. guttatus.


Assuntos
Epigênese Genética , Genômica , Mimulus/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Mimulus/fisiologia , Anotação de Sequência Molecular , Folhas de Planta/genética , Estresse Fisiológico/genética
9.
Mol Ecol Resour ; 18(6): 1402-1414, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30033616

RESUMO

Genome-wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome-wide markers that satisfy the key requirement that marker data are error-free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This "SNP-skimming" approach involves two steps: an initial genome-wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives-loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Flores/genética , Genótipo , Penstemon/genética , Fenótipo
10.
Ann Bot ; 119(7): 1211-1223, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334152

RESUMO

Background and Aims: Independent evolution of derived complex characters provides a unique opportunity to assess whether and how similar genetic changes correlate with morphological convergence. Bilaterally symmetrical corollas have evolved multiple times independently from radially symmetrical ancestors and likely represent adaptations to attract specific pollinators. On the other hand, losses of bilateral corolla symmetry have occurred sporadically in various groups, due to either modification of bilaterally symmetrical corollas in late development or early establishment of radial symmetry. Methods: This study integrated phylogenetic, scanning electron microscopy (SEM)-based morphological, and gene expression approaches to assess the possible mechanisms underlying independent evolutionary losses of corolla bilateral symmetry. Key Results: This work compared three species of Lamiaceae having radially symmetrical mature corollas with a representative sister taxon having bilaterally symmetrical corollas and found that each reaches radial symmetry in a different way. Higher core Lamiales share a common duplication in the CYCLOIDEA (CYC ) 2 gene lineage and show conserved and asymmetrical expression of CYC2 clade and RAD genes along the adaxial-abaxial floral axis in species having bilateral corolla symmetry. In Lycopus americanus , the development and expression pattern of La-CYC2A and La-CYC2B are similar to those of their bilaterally symmetrical relatives, whereas the loss of La-RAD expression correlates with a late switch to radial corolla symmetry. In Mentha longifolia , late radial symmetry may be explained by the loss of Ml-CYC2A , and by altered expression of two Ml-CYC2B and Ml-RAD genes . Finally, expanded expression of Cc-CYC2A and Cc-RAD strongly correlates with the early development of radially symmetrical corollas in Callicarpa cathayana . Conclusions: Repeated losses of mature corolla bilateral symmetry in Lamiaceae are not uncommon, and may be achieved by distinct mechanisms and various changes to symmetry genes, including the loss of a CYC2 clade gene from the genome, and/or contraction, expansion or alteration of CYC2 clade and RAD -like gene expression.


Assuntos
Evolução Biológica , Flores/anatomia & histologia , Lamiaceae/anatomia & histologia , Filogenia , Animais , Sequência Conservada , Genes de Plantas , Lamiaceae/genética , Microscopia Eletrônica de Varredura
11.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147092

RESUMO

Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years.


Assuntos
Flores/anatomia & histologia , Flores/fisiologia , Magnoliopsida/fisiologia , Biodiversidade , Evolução Biológica , Modelos Biológicos , Filogenia , Característica Quantitativa Herdável , Processos Estocásticos
12.
Dev Biol ; 419(1): 175-183, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153988

RESUMO

Adaptive phenotypic evolution is shaped by natural selection on multiple organismal traits as well as by genetic correlations among traits. Genetic correlations can arise through pleiotropy and can bias the production of phenotypic variation to certain combinations of traits. This phenomenon is referred to as developmental bias or constraint. Developmental bias may accelerate or constrain phenotypic evolution, depending on whether selection acts parallel or in opposition to genetic correlations among traits. We discuss examples from floral evolution where genetic correlations among floral traits contribute to rapid, coordinated evolution in multiple floral organ phenotypes and suggest future research directions that will explore the relationship between the genetic basis of adaptation and the pre-existing structure of genetic correlations. On the other hand, natural selection may act perpendicular to a strong genetic correlation, for example when two traits are encoded by a subset of the same genes and natural selection favors change in one trait and stability in the second trait. In such cases, adaptation is constrained by the availability of genetic variation that can influence the focal trait with minimal pleiotropic effects. Examples from plant diversification suggest that the origin of certain adaptations depends on the prior evolution of a gene copy with reduced pleiotropic effects, generated through the process of gene duplication followed by subfunctionalization or neofunctionalization. A history of gene duplication in some developmental pathways appears to have allowed particular flowering plant linages to have repeatedly evolved adaptations that might otherwise have been developmentally constrained.


Assuntos
Evolução Biológica , Flores/fisiologia , Genes de Plantas , Adaptação Fisiológica , Cruzamentos Genéticos , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Variação Genética , Modelos Biológicos , Fenótipo , Polinização , Seleção Genética
13.
Am J Bot ; 103(5): 912-22, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27208359

RESUMO

PREMISE OF THE STUDY: Evolutionary radiations provide opportunities to examine large-scale patterns in diversification and character evolution, yet are often recalcitrant to phylogenetic resolution due to rapid speciation events. The plant genus Penstemon has been difficult to resolve using Sanger sequence-based markers, leading to the hypothesis that it represents a recent North American radiation. The current study demonstrates the utility of multiplexed shotgun genotyping (MSG), a style of restriction site-associated DNA sequencing (RADseq), to infer phylogenetic relationships within a subset of species in this genus and provide insight into evolutionary patterns. METHODS: We sampled genomic DNA, primarily from herbarium material, and subjected it to MSG library preparation and Illumina sequencing. The resultant sequencing reads were clustered into homologous loci, aligned, and concatenated into data matrices that differed according to clustering similarity and amount of missing data. We performed phylogenetic analyses on these matrices using maximum likelihood (RAxML) and a species tree approach (SVDquartets). KEY RESULTS: MSG data provide a highly resolved estimate of species relationships within Penstemon. While most species relationships were highly supported, the position of certain taxa remains ambiguous, suggesting that increased taxonomic sampling or additional methodologies may be required. The data confirm that evolutionary shifts from hymenopteran- to hummingbird-adapted flowers have occurred independently many times. CONCLUSIONS: This study demonstrates that phylogenomic approaches yielding thousands of variable sites can greatly improve species-level resolution of recent and rapid radiations. Similar to other studies, we found that less conservative similarity and missing data thresholds resulted in more highly supported topologies.


Assuntos
Técnicas de Genotipagem/métodos , Penstemon/genética , Flores/anatomia & histologia , Funções Verossimilhança , América do Norte , Filogenia , Polinização/fisiologia , Especificidade da Espécie
14.
Planta ; 243(2): 429-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26445769

RESUMO

MAIN CONCLUSION: Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.


Assuntos
Petunia/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Petunia/efeitos dos fármacos , Petunia/crescimento & desenvolvimento , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
BMC Genomics ; 16: 507, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148779

RESUMO

BACKGROUND: The presence of methyl groups on cytosine nucleotides across an organism's genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression. RESULTS: We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based on DNA methylation (R(2) = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of recombination in these same regions. CONCLUSIONS: The establishment here of a reference methylome will be a useful resource for the continued advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation patterns are an important predictor of variation in gene expression. This model provides a novel approach for differential methylation analysis that generates distinct and testable hypotheses regarding gene expression.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Mimulus/genética , Cromossomos/genética , Genoma de Planta/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
16.
New Phytol ; 205(2): 894-906, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25297849

RESUMO

Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents.


Assuntos
Regulação da Expressão Gênica de Plantas , Mimulus/genética , Folhas de Planta/fisiologia , Epigênese Genética , Ontologia Genética , Redes e Vias Metabólicas/genética , Mimulus/fisiologia , Folhas de Planta/genética , Plântula/genética
17.
Philos Trans R Soc Lond B Biol Sci ; 369(1648)2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24958922

RESUMO

A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.


Assuntos
Antirrhinum/anatomia & histologia , Evolução Biológica , Flores/anatomia & histologia , Morfogênese/genética , Filogenia , Antirrhinum/genética , Proteínas de Ligação a DNA/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética
18.
Philos Trans R Soc Lond B Biol Sci ; 369(1648)2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24958923

RESUMO

Distinct floral pollination syndromes have emerged multiple times during the diversification of flowering plants. For example, in western North America, a hummingbird pollination syndrome has evolved more than 100 times, generally from within insect-pollinated lineages. The hummingbird syndrome is characterized by a suite of floral traits that attracts and facilitates pollen movement by hummingbirds, while at the same time discourages bee visitation. These floral traits generally include large nectar volume, red flower colour, elongated and narrow corolla tubes and reproductive organs that are exerted from the corolla. A handful of studies have examined the genetic architecture of hummingbird pollination syndrome evolution. These studies find that mutations of relatively large effect often explain increased nectar volume and transition to red flower colour. In addition, they suggest that adaptive suites of floral traits may often exhibit a high degree of genetic linkage, which could facilitate their fixation during pollination syndrome evolution. Here, we explore these emerging generalities by investigating the genetic basis of floral pollination syndrome divergence between two related Penstemon species with different pollination syndromes--bee-pollinated P. neomexicanus and closely related hummingbird-pollinated P. barbatus. In an F2 mapping population derived from a cross between these two species, we characterized the effect size of genetic loci underlying floral trait divergence associated with the transition to bird pollination, as well as correlation structure of floral trait variation. We find the effect sizes of quantitative trait loci for adaptive floral traits are in line with patterns observed in previous studies, and find strong evidence that suites of floral traits are genetically linked. This linkage may be due to genetic proximity or pleiotropic effects of single causative loci. Interestingly, our data suggest that the evolution of floral traits critical for hummingbird pollination was not constrained by negative pleiotropy at loci that show co-localization for multiple traits.


Assuntos
Evolução Biológica , Flores/anatomia & histologia , Penstemon/genética , Penstemon/fisiologia , Polinização/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Genótipo , Pigmentação/genética , Sudoeste dos Estados Unidos , Especificidade da Espécie
19.
Curr Opin Plant Biol ; 17: 146-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24507506

RESUMO

Bilateral flower symmetry has evolved multiple times during flowering plant diversification, is associated with specialized pollination, and is hypothesized to have contributed to flowering plant species richness. The genes and genetic interactions that control bilateral symmetry are well understood in the model species Snapdragon (Antirrhinum majus). I review recent insights into the genetic control of symmetry in Snapdragon. I summarize how this foundational genetic work has been integrated with mathematical modeling approaches, which together provided new insights into the control of quantitative aspects of petal shape. Lastly, I review how evolutionary studies, stemming from knowledge of the genetic control of symmetry in Snapdragon flowers, have revealed extensive parallel recruitment of a similar genetic program during repeated evolution of bilateral symmetry.


Assuntos
Antirrhinum/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Antirrhinum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Filogenia
20.
Front Plant Sci ; 4: 80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577017

RESUMO

The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...