Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0157923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349160

RESUMO

Adequate dosing of antimicrobials is paramount for treating infections in critically ill patients undergoing kidney replacement therapy; however, little is known about antimicrobial removal by sustained low-efficiency dialysis (SLED). The objective was to quantify the removal of cefepime, daptomycin, meropenem, piperacillin-tazobactam, and vancomycin in patients undergoing SLED. Adult patients ≥18 years with acute kidney injury (AKI) or end-stage kidney disease receiving one of the select antimicrobials and requiring SLED were included. Blood and dialysate flow rates were maintained at 250 and 100 mL/min, respectively. Simultaneous arterial and venous blood samples for the analysis of antibiotic concentrations were collected hourly for 8 hours during SLED (on-SLED). Arterial samples were collected every 2 hours for up to 6 hours while not receiving SLED (off-SLED) for the calculation of SLED clearance, half-life (t1/2) on-SLED and off-SLED, and the fraction of removal by SLED (fD). Twenty-one patients completed the study: 52% male, mean age (±SD) 53 ± 13 years, and mean weight of 98 ± 30 kg. Eighty-six percent had AKI, and 4 patients were receiving cefepime, 3 daptomycin, 10 meropenem, 6 piperacillin-tazobactam, and 13 vancomycin. The average SLED time was 7.3 ± 1.1 hours, and the mean ultrafiltration rate was 95 ± 52 mL/hour (range 10-211). The t1/2 on-SLED was substantially lower than the off-SLED t1/2 for all antimicrobials, and the SLED fD varied between 44% and 77%. An 8-hour SLED session led to significant elimination of most antimicrobials evaluated. If SLED is performed, modification of the dosing regimen is warranted to avoid subtherapeutic concentrations.


Assuntos
Injúria Renal Aguda , Daptomicina , Terapia de Substituição Renal Híbrida , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Meropeném/uso terapêutico , Vancomicina/uso terapêutico , Cefepima/uso terapêutico , Daptomicina/uso terapêutico , Diálise Renal , Antibacterianos , Combinação Piperacilina e Tazobactam/uso terapêutico , Estado Terminal , Injúria Renal Aguda/tratamento farmacológico , Estudos Retrospectivos
2.
Sci Adv ; 8(14): eabm8501, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394828

RESUMO

In contrast to prokaryotes wherein GUG and UUG are permissive start codons, initiation frequencies from non-AUG codons are generally low in eukaryotes, with CUG being considered as strongest. Here, we report that combined 5-cytosine methylation (5mC) and pseudouridylation (Ψ) of near-cognate non-AUG start codons convert GUG and UUG initiation strongly favored over CUG initiation in eukaryotic translation under a certain context. This prokaryotic-like preference is attributed to enhanced NUG initiation by Ψ in the second base and reduced CUG initiation by 5mC in the first base. Molecular dynamics simulation analysis of tRNAiMet anticodon base pairing to the modified codons demonstrates that Ψ universally raises the affinity of codon:anticodon pairing within the ribosomal preinitiation complex through partially mitigating discrimination against non-AUG codons imposed by eukaryotic initiation factor 1. We propose that translational control by chemical modifications of start codon bases can offer a new layer of proteome diversity regulation and therapeutic mRNA technology.

3.
Cell Rep ; 36(2): 109376, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260931

RESUMO

eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. In Drosophila, 5MP/Kra represses neuronal toxicity and enhances the lifespan in an FXTAS disease model. These results implicate 5MP in protecting cells from unwanted byproducts of non-AUG translation in neurodegeneration.


Assuntos
Códon de Iniciação/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Proteínas de Ligação a DNA/química , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/química , Células HEK293 , Humanos , Masculino , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/metabolismo
4.
Nucleic Acids Res ; 48(16): 8977-8992, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710633

RESUMO

The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5'-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as '5'-UGA(C/G)GG-3', are found in 5' leader regions of regulated genes and shown to be responsible for translational control.


Assuntos
Motivos de Nucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Acetiltransferases/metabolismo , Regulação Fúngica da Expressão Gênica , Histidina/metabolismo , Fases de Leitura Aberta , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...