Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Math Biol ; 87(4): 60, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733146

RESUMO

Many populations occupy spatially fragmented landscapes. How dispersal affects the asymptotic total population size is a key question for conservation management and the design of ecological corridors. Here, we provide a comprehensive overview of two-patch models with symmetric dispersal and two standard density-dependent population growth functions, one in discrete and one in continuous time. A complete analysis of the discrete-time model reveals four response scenarios of the asymptotic total population size to increasing dispersal rate: (1) monotonically beneficial, (2) unimodally beneficial, (3) beneficial turning detrimental, and (4) monotonically detrimental. The same response scenarios exist for the continuous-time model, and we show that the parameter conditions are analogous between the discrete- and continuous-time setting. A detailed biological interpretation offers insight into the mechanisms underlying the response scenarios that thus improve our general understanding how potential conservation efforts affect population size.


Assuntos
Crescimento Demográfico , Densidade Demográfica
2.
J Math Biol ; 87(2): 38, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537411

RESUMO

We explore the spatial spread of vector-borne infections with conditional vector preferences, meaning that vectors do not visit hosts at random. Vectors may be differentially attracted toward infected and uninfected hosts depending on whether they carry the pathogen or not. The model is expressed as a system of partial differential equations with vector diffusion. We first study the non-spatial model. We show that conditional vector preferences alone (in the absence of any epidemiological feedback on their population dynamics) may result in bistability between the disease-free equilibrium and an endemic equilibrium. A backward bifurcation may allow the disease to persist even though its basic reproductive number is less than one. Bistability can occur only if both infected and uninfected vectors prefer uninfected hosts. Back to the model with diffusion, we show that bistability in the local dynamics may generate travelling waves with either positive or negative spreading speeds, meaning that the disease either invades or retreats into space. In the monostable case, we show that the disease spreading speed depends on the preference of uninfected vectors for infected hosts, but also on the preference of infected vectors for uninfected hosts under some circumstances (when the spreading speed is not linearly determined). We discuss the implications of our results for vector-borne plant diseases, which are the main source of evidence for conditional vector preferences so far.


Assuntos
Doenças Transmissíveis , Doenças Transmitidas por Vetores , Humanos , Doenças Transmissíveis/epidemiologia , Número Básico de Reprodução
3.
Proc Natl Acad Sci U S A ; 119(44): e2209601119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279470

RESUMO

The importance of oscillations and deterministic chaos in natural biological systems has been discussed for several decades and was originally based on discrete-time population growth models (May 1974). Recently, all types of nonlinear dynamics were shown for experimental communities where several species interact. Yet, there are no data exhibiting the whole range of nonlinear dynamics for single-species systems without trophic interactions. Up until now, ecological experiments and models ignored the intracellular dimension, which includes multiple nonlinear processes even within one cell type. Here, we show that dynamics of single-species systems of protists in continuous experimental chemostat systems and corresponding continuous-time models reveal typical characteristics of nonlinear dynamics and even deterministic chaos, a very rare discovery. An automatic cell registration enabled a continuous and undisturbed analysis of dynamic behavior with a high temporal resolution. Our simple and general model considering the cell cycle exhibits a remarkable spectrum of dynamic behavior. Chaos-like dynamics were shown in continuous single-species populations in experimental and modeling data on the level of a single type of cells without any external forcing. This study demonstrates how complex processes occurring in single cells influence dynamics on the population level. Nonlinearity should be considered as an important phenomenon in cell biology and single-species dynamics and also, for the maintenance of high biodiversity in nature, a prerequisite for nature conservation.


Assuntos
Eucariotos , Dinâmica não Linear , Humanos , Modelos Biológicos , Dinâmica Populacional
4.
Bull Math Biol ; 83(10): 107, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482488

RESUMO

As many ecosystems worldwide are in peril, efforts to manage them sustainably require scientific advice. While numerous researchers around the world use a great variety of models to understand ecological dynamics and their responses to disturbances, only a small fraction of these models are ever used to inform ecosystem management. There seems to be a perception that ecological models are not useful for management, even though mathematical models are indispensable in many other fields. We were curious about this mismatch, its roots, and potential ways to overcome it. We searched the literature on recommendations and best practices for how to make ecological models useful to the management of ecosystems and we searched for 'success stories' from the past. We selected and examined several cases where models were instrumental in ecosystem management. We documented their success and asked whether and to what extent they followed recommended best practices. We found that there is not a unique way to conduct a research project that is useful in management decisions. While research is more likely to have impact when conducted with many stakeholders involved and specific to a situation for which data are available, there are great examples of small groups or individuals conducting highly influential research even in the absence of detailed data. We put the question of modelling for ecosystem management into a socio-economic and national context and give our perspectives on how the discipline could move forward.


Assuntos
Ecossistema , Conceitos Matemáticos , Humanos , Modelos Teóricos
5.
J Theor Biol ; 509: 110491, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32949591

RESUMO

Social-ecological models are often used to investigate the mutual interactions between an ecological system and human behaviour at a collective level. The social system is widely represented either by the replicator dynamics or by the best-response dynamics. We investigate the consequences of choosing one or the other with the example of a social-ecological model for eutrophication in shallow lakes, where the anthropogenic discharge of pollutants into the water is determined by a behavioural model using the replicator or a best-response dynamics. We discuss a fundamental difference between the replicator dynamics and the logit formulation of the best-response dynamics. This fundamental difference results in a different number of equilibria. We show that the replicator equation is a limit case of the best-response model, when agents are assumed to behave with infinite rationality. If agents act less rationally in the model using the best-response dynamics, the correspondence with the model using the replicator dynamics decreases. Finally, we show that sustained oscillations observed in both cases may differ substantially. The replicator dynamics makes the amplitude of the limit cycle become larger and makes the system come closer to full cooperation or full defection. Thus, the dynamics along the limit cycle imply a different risk for the system to be pushed by a perturbation into a desirable or an undesirable outcome depending on the socioeconomic dynamics assumed in the model. When analyzing social-ecological models, the choice of a socioeconomic dynamics is often little justified but our results show that it may have dramatic impacts on the coupled human-environment system.


Assuntos
Eutrofização , Lagos , Ecossistema , Humanos , Modelos Teóricos
6.
J R Soc Interface ; 17(170): 20200566, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32933374

RESUMO

The forecasting of sudden, irreversible shifts in natural systems is a challenge of great importance, whose realization could allow pre-emptive action to be taken to avoid or mitigate catastrophic transitions, or to help systems adapt to them. In recent years, there have been many advances in the development of such early warning signals. However, much of the current toolbox is based around the tracking of statistical trends and therefore does not aim to estimate the future time scale of transitions or resilience loss. Metric-based indicators are also difficult to implement when systems have inherent oscillations which can dominate the indicator statistics. To resolve these gaps in the toolbox, we use additional system properties to fit parsimonious models to dynamics in order to predict transitions. Here, we consider nearly-one-dimensional systems-higher dimensional systems whose dynamics can be accurately captured by one-dimensional discrete time maps. We show how the nearly one-dimensional dynamics can be used to produce model-based indicators for critical transitions which produce forecasts of the resilience and the time of transitions in the system. A particularly promising feature of this approach is that it allows us to construct early warning signals even for critical transitions of chaotic systems. We demonstrate this approach on two model systems: of phosphorous recycling in a shallow lake, and of an overcompensatory fish population.


Assuntos
Modelos Biológicos , Animais , Previsões
7.
Bull Math Biol ; 82(6): 82, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32542422

RESUMO

We present a discrete-time model of a spatially structured population and explore the effects of coupling when the local dynamics contain a strong Allee effect and overcompensation. While an isolated population can exhibit only bistability and essential extinction, a spatially structured population can exhibit numerous coexisting attractors. We identify mechanisms and parameter ranges that can protect the spatially structured population from essential extinction, whereas it is inevitable in the local system. In the case of weak coupling, a state where one subpopulation density lies above and the other one below the Allee threshold can prevent essential extinction. Strong coupling, on the other hand, enables both populations to persist above the Allee threshold when dynamics are (approximately) out of phase. In both cases, attractors have fractal basin boundaries. Outside of these parameter ranges, dispersal was not found to prevent essential extinction. We also demonstrate how spatial structure can lead to long transients of persistence before the population goes extinct.


Assuntos
Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Animais , Biologia Computacional , Ecossistema , Extinção Biológica , Fractais , Conceitos Matemáticos , Dinâmica não Linear , Densidade Demográfica
8.
PLoS Biol ; 17(12): e3000551, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794547

RESUMO

If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models.


Assuntos
Coinfecção/epidemiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções/epidemiologia , Animais , Estudos Transversais , Epidemias/estatística & dados numéricos , Humanos , Modelos Biológicos , Prevalência
9.
Viruses ; 11(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847125

RESUMO

Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high.


Assuntos
Coinfecção , Vetores de Doenças , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Algoritmos , Animais , Modelos Biológicos
11.
Theor Popul Biol ; 130: 1-12, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580866

RESUMO

Fluctuations in population size may have negative consequences (e.g., an increased risk of extinction or the occurrence of repeated outbreaks), and many management strategies are aimed at avoiding them by either only restocking or only harvesting the population. Two of these strategies are adaptive limiter control (ALC) and adaptive threshold harvesting (ATH). With ALC the population is controlled by only restocking and with ATH by only harvesting. We propose the strategy of combined adaptive limiter control (CALC) as the combination of ALC and ATH and study the potential advantages of CALC over ALC and ATH. We consider two different population models, namely a stochastic overcompensatory model and a host-pathogen-predator model. For the first model, our results show that the combination of restocking and harvesting under CALC improves the constancy stability of the managed populations when the harvesting and restocking intensities are high enough. Otherwise the effect is marginal or in rare cases negative. For the second model, we show that combining harvesting with restocking reduces the outbreak risk only if the harvesting intensity is low. For medium harvesting intensities the effect is marginal and for high harvesting intensities the risk of outbreaks is increased. In addition, we study the optimal harvesting-restocking balance by considering a proxy of the benefit obtained in terms of the reduction in the outbreak risk and the harvesting and restocking costs.


Assuntos
Dinâmica Populacional , Animais , Modelos Biológicos , Densidade Demográfica , Processos Estocásticos
12.
J Math Biol ; 79(5): 1927-1951, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482200

RESUMO

Threshold-based harvesting strategies tend to give high yields while protecting the exploited population. A significant drawback, however, is the possibility of harvesting moratoria with their socio-economic consequences, if the population size falls below the threshold and harvesting is not allowed anymore. Proportional threshold harvesting (PTH) is a strategy, where only a fraction of the population surplus above the threshold is harvested. It has been suggested to overcome the drawbacks of threshold-based strategies. Here, we use discrete-time single-species models and rigorously analyze the impact of PTH on population dynamics and stability. We find that the population response to PTH can be markedly different depending on the specific population model. Reducing the threshold and allowing more harvest can be destabilizing (for the Ricker and Hassell map), stabilizing (for the quadratic map), or both (for the generalized Beverton-Holt map). Similarly, management actions in the form of increasing the threshold do not always improve population stability-this can also be due to bistability. Our results therefore emphasize the importance of a rigorous analysis in investigating the impact of PTH on population stability.


Assuntos
Conservação dos Recursos Naturais , Modelos Biológicos , Dinâmica Populacional , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Espécies em Perigo de Extinção/estatística & dados numéricos , Conceitos Matemáticos , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Desenvolvimento Sustentável , Biologia de Sistemas , Fatores de Tempo
13.
Theor Popul Biol ; 130: 191-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445973

RESUMO

Predator interference is a form of competition between predator individuals over access to their prey. There is broad empirical evidence for interference to exist in different strengths in various types of ecological communities. At the same time, parasites are increasingly recognized to alter food web structure and dynamics. In order to investigate the eco-epidemiological interplay between interference and infection, we develop and analyze mathematical models of a predator-prey system, where the predators are subject to both interference and infectious disease. In the absence of infection, equilibrium predator density is known to show a non-monotonic response to interference by first increasing and then decreasing with increasing interference levels. We show that predator infection can change this pattern into a monotonically decreasing predator response to interference, provided the transmissibility is large enough and the pathogenicity is moderate such that the impact of disease on host population density prevails over interference effects. This holds for both types of disease transmission studied here, density-dependent and frequency-dependent. For density-dependent transmission, we find that intermediate values of interference can facilitate disease persistence, whereas the disease would disappear for small or large interference levels. By contrast, for frequency-dependent transmission, disease emergence is independent of interference levels. These dynamic interactions may be important for the understanding of potential biocontrol measures and of spread patterns of zoonotic diseases.


Assuntos
Ecossistema , Infecções/transmissão , Comportamento Predatório , Animais , Cadeia Alimentar , Interações Hospedeiro-Parasita , Modelos Teóricos , Densidade Demográfica
14.
Bull Math Biol ; 81(4): 995-1030, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30547276

RESUMO

Preytaxis is the attraction (or repulsion) of predators along prey density gradients and a potentially important mechanism for predator movement. However, the impact preytaxis has on the spatial spread of a predator invasion or of an epidemic within the prey has not been investigated. We investigate the effects preytaxis has on the wavespeed of several different invasion scenarios in an eco-epidemiological system. In general, preytaxis cannot slow down predator or disease invasions and there are scenarios where preytaxis speeds up predator or disease invasions. For example, in the absence of disease, attractive preytaxis results in an increased wavespeed of predators invading prey, whereas repulsive preytaxis has no effect on the wavespeed, but the wavefront is shallower. On top of this, repulsive preytaxis can induce spatiotemporal oscillations and/or chaos behind the invasion front, phenomena normally only seen when the (non-spatial) coexistence steady state is unstable. In the presence of disease, the predator wave can have a different response to attractive susceptible and attractive infected prey. In particular, we found a case where attractive infected prey increases the predators' wavespeed by a disproportionately large amount compared to attractive susceptible prey since a predator invasion has a larger impact on the infected population. When we consider a disease invading a predator-prey steady state, we found some counter-intuitive results. For example, the epidemic has an increased wavespeed when infected prey attract predators. Likewise, repulsive susceptible prey can also increase the infection wave's wavespeed. These results suggest that preytaxis can have a major effect on the interactions of predators, prey and diseases.


Assuntos
Modelos Biológicos , Comportamento Predatório , Doenças dos Animais/epidemiologia , Migração Animal , Animais , Ecossistema , Cadeia Alimentar , Conceitos Matemáticos , Dinâmica Populacional , Análise Espaço-Temporal
15.
Math Biosci ; 310: 120-127, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582953

RESUMO

We develop three discrete-time predator-prey models from the Nicholson-Bailey host-parasitoid framework, assuming a type II functional response and logistic prey growth in form of the Beverton-Holt map. Our models show many similarities with the continuous-time Rosenzweig-MacArthur model, not only the same equilibria and sequence of bifurcations, but also phenomena such as the hydra effect and paradox of enrichment. Our three models differ in the order of events, in which the processes of density-dependent prey regulation and predation take place. When their order is reversed, but their relative order remains the same such that only census timing is changed, we observe quantitative differences in population size, but no differences in qualitative behaviour. When a modified order of events induces delayed density dependence, we observe increased stability of population dynamics, which is somewhat contrary to conventional expectation. Overall, our models exhibit behaviour analogous to the Rosenzweig-MacArthur model and highlight the importance of the order of events in discrete-time models.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Animais , Dinâmica Populacional
16.
Bull Math Biol ; 80(10): 2788, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30159854

RESUMO

In the original article, the second author's family name was misspelled. The correct name is Marta Paliaga.

17.
Bull Math Biol ; 79(10): 2175-2196, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28795325

RESUMO

Social predators benefit from cooperation in the form of increased hunting success, but may be at higher risk of disease infection due to living in groups. Here, we use mathematical modeling to investigate the impact of disease transmission on the population dynamics benefits provided by group hunting. We consider a predator-prey model with foraging facilitation that can induce strong Allee effects in the predators. We extend this model by an infectious disease spreading horizontally and vertically in the predator population. The model is a system of three nonlinear differential equations. We analyze the equilibrium points and their stability as well as one- and two-parameter bifurcations. Our results show that weakly cooperating predators go unconditionally extinct for highly transmissible diseases. By contrast, if cooperation is strong enough, the social behavior mediates conditional predator persistence. The system is bistable, such that small predator populations are driven extinct by the disease or a lack of prey, and large predator populations survive because of their cooperation even though they would be doomed to extinction in the absence of group hunting. We identify a critical cooperation level that is needed to avoid the possibility of unconditional predator extinction. We also investigate how transmissibility and cooperation affect the stability of predator-prey dynamics. The introduction of parasites may be fatal for small populations of social predators that decline for other reasons. For invasive predators that cooperate strongly, biocontrol by releasing parasites alone may not be sufficient.


Assuntos
Modelos Biológicos , Comportamento Predatório , Animais , Número Básico de Reprodução , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Doenças Transmissíveis/veterinária , Comportamento Cooperativo , Cadeia Alimentar , Modelos Lineares , Conceitos Matemáticos , Dinâmica Populacional , Comportamento Social
18.
Ecol Lett ; 20(8): 1074-1092, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28633194

RESUMO

Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Ecossistema , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório
19.
Phytopathology ; 107(10): 1095-1108, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28535127

RESUMO

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Modelos Teóricos , Doenças das Plantas/prevenção & controle , Potyvirus/isolamento & purificação , Tombusviridae/isolamento & purificação , Zea mays/virologia , Agricultura , Coinfecção , Controle de Insetos , Quênia , Doenças das Plantas/estatística & dados numéricos , Doenças das Plantas/virologia , Sementes/virologia
20.
Virus Res ; 241: 77-87, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28434906

RESUMO

Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in infected plants. To better understand plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity. We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations, we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this study include the evolution of conditional (environment-dependent) mutualism in plant viruses.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas/virologia , Transmissão de Doença Infecciosa , Modelos Biológicos , Sementes/virologia , Simbiose/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...