Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600176

RESUMO

Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.

2.
J Clin Transl Pathol ; 2(3): 108-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276172

RESUMO

Background and objectives: Genotyping is an important tool for studying gene functions in animals or detecting genetic variants in humans. Various methods using low to high concentrations of agarose or polyacrylamide gel electrophoresis have been developed for genotyping. These methods rely on the detection of large-size differences (20-2,000 bp) of targeted PCR products between a wild-type gene and a mutant gene. Endonuclease digestion was introduced to identify heterozygous mutations, but it was not possible to differentiate the wild-type from the homozygous mutants with the same or similar size. This study thus developed a novel, simple, and reliable test for genotyping animals or cells following genetic modifications. Methods: We developed an improved and simple method that used 2% agarose gel electrophoresis following T7E1 or Surveyor endonuclease digestion to firstly separate the heterozygous mutations from the wild-type or homozygous mutations. By adding a wild-type PCR product to a potentially homozygous product, which would form heteroduplexes, we could then separate the wild-type from a homozygous mutation with a nearly identical size or only a single base pair substitution without Sanger sequencing. Results: We verified this method in genotyping zebrafish mutants with a 2-8-bp deletion or insertion and mouse mutants with a 1- or 8-bp substitution. The wild-type, heterozygous, and homozygous mutations ranged 1-8 bp were clearly differentiated on agarose gel. Sanger sequencing also confirmed our genotyping results. Conclusions: This novel and improved genotyping method may have a broad application in many clinical and research laboratories for rapid and economical genotyping of patients and animals with a small area deletion or single base pair substitution, particularly in the era of gene editing or in those with naturally occurring mutations.

3.
PLoS One ; 17(7): e0257786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895711

RESUMO

Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.


Assuntos
Endopeptidases , Chaperonas Moleculares , Citosol/metabolismo , Endopeptidases/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...