Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 9(1): 471-481, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859805

RESUMO

Charge transfer and energy conversion processes at semiconductor/electrolyte interfaces are controlled by local electric field distributions, which can be especially challenging to measure. Herein we leverage the low vapor pressure and vacuum compatibility of ionic liquid electrolytes to undertake a layer-by-layer, ultra-high vacuum deposition of a prototypical ionic liquid EMIM+ (1-ethyl-3-methylimidazolium) and TFSI- (bis(trifluoromethylsulfonyl)-imide) on the surfaces of different electronic materials. We consider a case-by-case study between a standard metal (Au) and four printed electronic materials, where interfaces are characterized by a combination of X-ray and ultraviolet photoemission spectroscopies (XPS/UPS). For template-stripped gold surfaces, we observe through XPS a preferential orientation of the TFSI anion at the gold surface, enabling large electric fields (∼108 eV m-1) within the first two monolayers detected by a large surface vacuum level shift (0.7 eV) in UPS. Conversely, we observe a much more random orientation on four printable semiconductor surfaces: methyl ammonium lead triiodide (MAPbI3), regioregular poly(3-hexylthiophene-2,5-diyl (P3HT)), sol-gel nickel oxide (NiOx), and PbIx-capped PbS quantum dots. For the semiconductors considered, the ionization energy (IE) of the ionic liquid at 3 ML coverage is highly substrate dependent, indicating that underlying chemical reactions are dominating interface level alignment (electronic equilibration) prior to reaching bulk electronic structure. This indicates there is no universal rule for energy level alignment, but that relative strengths of Lewis acid/base sites and ion-molecular interactions should be considered. Specifically, for P3HT, interactions are found to be relatively weak and occurring through the π-bonding structure in the thiophene ring. Alternatively, for NiOx, PbS/PbIx quantum dots, and MAPbI3, our XPS data suggest a combination of ionic bonding and Lewis acid/base reactions between the semiconductor and IL, with MAPbI3 being the most reactive surface. Collectively, our results point towards new directions in interface engineering, where strategically chosen ionic liquid-based anions and cations can be used to preferentially passivate and/or titrate surface defects of heterogeneous surfaces while simultaneously providing highly localized electric fields. These opportunities are expected to be translatable to opto-electronic and electrochemical devices, including energy conversion and storage and biosensing applications.


Assuntos
Líquidos Iônicos , Imidas/química , Líquidos Iônicos/química , Ácidos de Lewis , Bases de Lewis , Semicondutores
2.
Chem Sci ; 12(14): 5102-5112, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163749

RESUMO

Two-dimensional semiconductors (2DSCs) are promising materials for a wide range of optoelectronic applications. While the fabrication of 2DSCs with thicknesses down to the monolayer limit has been demonstrated through a variety of routes, a robust understanding of carrier transport within these materials is needed to guide the rational design of improved practical devices. In particular, the influence of different types of structural defects on transport is critical, but difficult to interrogate experimentally. Here, a new approach to visualizing carrier transport within 2DSCs, Carrier Generation-Tip Collection Scanning Electrochemical Cell Microscopy (CG-TC SECCM), is described which is capable of providing information at the single-defect level. In this approach, carriers are locally generated within a material using a focused light source and detected as they drive photoelectrochemical reactions at a spatially-offset electrolyte interface created through contact with a pipet-based probe, allowing carrier transport across well-defined, µm-scale paths within a material to be directly interrogated. The efficacy of this approach is demonstrated through studies of minority carrier transport within mechanically-exfoliated n-type WSe2 nanosheets. CG-TC SECCM imaging experiments carried out within pristine basal planes revealed highly anisotropic hole transport, with in-plane and out-of-plane hole diffusion lengths of 2.8 µm and 5.8 nm, respectively. Experiments were also carried out to probe recombination across individual step edge defects within n-WSe2 which suggest a significant surface charge (∼5 mC m-2) exists at these defects, significantly influencing carrier transport. Together, these studies demonstrate a powerful new approach to visualizing carrier transport and recombination within 2DSCs, down to the single-defect level.

3.
J Phys Chem Lett ; 11(9): 3488-3494, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32286830

RESUMO

Control over photophysical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) is the key to advance their applications in next-generation optoelectronics. Although chemical doping and surface modification with plasmonic metals have been reported to tune the photophysical and catalytic properties of 2D TMDs, there have been few reports of tuning optical properties using dynamic electrochemical control of electrode potential. Herein, we report (1) the photoluminescence (PL) enhancement and red-shift in the PL spectrum of 2D MoS2, synthesized by chemical vapor deposition and subsequent transfer onto an indium tin oxide electrode, upon electrochemical anodization and (2) spatial heterogeneities in its photoelectrochemical (PEC) activities. Spectroelectrochemistry shows that positive electrochemical bias causes an initial ten-fold increase in the PL intensity followed by a quick decrease in the enhancement. The PL enhancement and spectrum red-shift are associated with the decrease in nonradiative decay rates of excitons formed upon electrochemical anodization of 2D MoS2. Additionally, scanning electrochemical cell microscopy (SECCM) study shows that the 2D MoS2 crystal is spatially sensitive to PEC oxidation at positive potentials. SECCM also shows a photocurrent increase caused by spatially heterogeneous edge-type defect sites of the crystal.

4.
Nano Lett ; 19(8): 5710-5716, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287956

RESUMO

Spatial variations in photoelectrochemical reaction rates within individual p-type WSe2 nanosheets were mapped through the application of scanning electrochemical cell microscopy (SECCM). The simultaneous topographical and electrochemical information provided via SECCM directly revealed how both sheet thickness and the presence of defect structures affect the local rate of photoelectrochemical reactions for both outer sphere and inner sphere redox couples. Sheet thickness was found to play a dramatic role in reaction rates, with onset potentials shifting by as much as 0.5 V over thicknesses of 20-120 nm, attributable to the inability of thin sheets to support independent space charge layers. Step/edge features were found to play a detrimental role for the outer sphere redox couple investigated (Ru(NH3)63+ reduction), with taller steps having larger effects on performance. Shorter step features were found to be beneficial for hydrogen evolution, showing a controlled density of defect features is desirable for inner sphere processes. The studies presented here not only provide valuable, quantitative insights into the behavior of transitional metal dichalcogenide materials but also demonstrate the power of applying SECCM to the study of photoelectrochemical systems, particularly those involving two-dimensional (2D) materials.

5.
Anal Chem ; 90(21): 12832-12839, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30289244

RESUMO

A novel analytical methodology based on correlated optical and electroanalytical measurements was developed to probe electrocatalytic reactions at individual nanoparticles (NPs) with well-defined geometries. The developed methodology, Optically Targeted ElectroChemical Cell Microscopy (OTECCM), relies on a combination of optical hyperspectral imaging, to locate individual NPs and provide structural information, and Scanning ElectroChemical Cell Microscopy (SECCM), to provide direct information on the electrochemical behavior of the same NPs. This complementary strategy allows for SECCM measurements to be carried out in a "targeted" fashion, offering significant throughput advantages over conventional, scanning-based approaches. The developed methodology was applied to study the electrocatalytic oxidation of hydrazine at individual Au nanorods (NRs). Correlated electron microscopy investigations were carried out to conclusively demonstrate the ability of the proposed methodology to probe electrochemical reactions at individual NRs. A wide variety in behavior of the individual NRs was observed, with surface reactions at Au playing a prominent role in the observed response. In situ spectroscopic investigations at individual NRs suggest surface restructuring and/or residual ligand desorption leads to significant changes in catalytic activity over time. Results from the correlated electron microscopy investigations as well as the statistical analyses of data obtained for hundreds of individual nanostructures suggest that the gross geometry of a NR is a poor predictor of its electrocatalytic performance.


Assuntos
Técnicas Eletroquímicas/métodos , Ouro/química , Hidrazinas/química , Microscopia/métodos , Nanotubos/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...