Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6784-6791, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152109

RESUMO

Infection by Rhinovirus-C (RV-C), a species of Picornaviridae Enterovirus, is strongly associated with childhood asthma exacerbations. Cellular binding and entry by all RV-C, which trigger these episodes, is mediated by the first extracellular domain (EC1) of cadherin-related protein 3 (CDHR3), a surface cadherin-like protein expressed primarily on the apical surfaces of ciliated airway epithelial cells. Although recombinant EC1 is a potent inhibitor of viral infection, there is no molecular description of this protein or its binding site on RV-C. Here we present cryo-electron microscopy (EM) data resolving the EC1 and EC1+2 domains of human CDHR3 complexed with viral isolate C15a. Structure-suggested residues contributing to required interfaces on both EC1 and C15a were probed and identified by mutagenesis studies with four different RV-C genotypes. In contrast to most other rhinoviruses, which bind intercellular adhesion molecule 1 receptors via a capsid protein VP1-specific fivefold canyon feature, the CDHR3 EC1 contacts C15a, and presumably all RV-Cs, in a unique cohesive footprint near the threefold vertex, encompassing residues primarily from viral protein VP3, but also from VP1 and VP2. The EC1+2 footprint on C15a is similar to that of EC1 alone but shows that steric hindrance imposed by EC2 would likely prevent multiprotein binding by the native receptor at any singular threefold vertex. Definition of the molecular interface between the RV-Cs and their receptors provides new avenues that can be explored for potential antiviral therapies.


Assuntos
Caderinas/química , Caderinas/metabolismo , Microscopia Crioeletrônica/métodos , Enterovirus/química , Enterovirus/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Proteínas Relacionadas a Caderinas , Enterovirus/classificação , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica
2.
Virology ; 499: 350-360, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27743961

RESUMO

Viruses in the rhinovirus C species (RV-C) can cause severe respiratory illnesses in children including pneumonia and asthma exacerbations. A transduced cell line (HeLa-E8) stably expressing the CDHR3-Y529 receptor variant, supports propagation of RV-C after infection. C15 clinical or recombinant isolates replicate in HeLa-E8, however progeny yields are lower than those of related strains of RV-A and RV-B. Serial passaging of C15 in HeLa-E8 resulted in stronger cytopathic effects and increased (≥10-fold) virus binding to cells and progeny yields. The adaptation was acquired by two mutations which increased binding (VP1 T125K) and replication (3A E41K), respectively. A similar 3A mutation engineered into C2 and C41 cDNAs also improved viral replication (2-8 fold) in HeLa but the heparan sulfate mediated cell-binding enhancement by the VP1 change was C15-specific. The findings now enable large-scale cost-effective C15 production by infection and the testing of RV-C infectivity by plaque assay.


Assuntos
Mutação de Sentido Incorreto , Infecções por Picornaviridae/virologia , Rhinovirus/genética , Proteínas Virais/genética , Replicação Viral , Motivos de Aminoácidos , Células HeLa , Humanos , Rhinovirus/química , Rhinovirus/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Ligação Viral
3.
Proc Natl Acad Sci U S A ; 113(32): 8997-9002, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27511920

RESUMO

Isolates of rhinovirus C (RV-C), a recently identified Enterovirus (EV) species, are the causative agents of severe respiratory infections among children and are linked to childhood asthma exacerbations. The RV-C have been refractory to structure determination because they are difficult to propagate in vitro. Here, we report the cryo-EM atomic structures of the full virion and native empty particle (NEP) of RV-C15a. The virus has 60 "fingers" on the virus outer surface that probably function as dominant immunogens. Because the NEPs also display these fingers, they may have utility as vaccine candidates. A sequence-conserved surface depression adjacent to each finger forms a likely binding site for the sialic acid on its receptor. The RV-C, unlike other EVs, are resistant to capsid-binding antiviral compounds because the hydrophobic pocket in VP1 is filled with multiple bulky residues. These results define potential molecular determinants for designing antiviral therapeutics and vaccines.


Assuntos
Asma/etiologia , Enterovirus/ultraestrutura , Vírion/ultraestrutura , Asma/virologia , Sequência Conservada , Microscopia Crioeletrônica , Glicosilação , Humanos , Receptores Virais/química
4.
PLoS One ; 7(2): e32061, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355409

RESUMO

Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC(0), induces lower respiratory tract infections in mice. After intranasal vMC(0) inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC(0), but not vehicle or UV-inactivated vMC(0), induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC(0), compared with those inoculated with vehicle or UV-inactivated vMC(0), exhibited increased pulmonary expression of interferon (IFN-α, IFN-ß, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC(0), but not vehicle or UV-inactivated vMC(0), was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC(0) by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans.


Assuntos
Mengovirus/genética , Mengovirus/patogenicidade , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Western Blotting , Modelos Animais de Doenças , Edema/imunologia , Edema/metabolismo , Edema/virologia , Feminino , Expressão Gênica , Humanos , Interferons/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Mengovirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/virologia , Infecções por Picornaviridae/imunologia , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/imunologia , Eliminação de Partículas Virais/genética , Redução de Peso
5.
Viral Immunol ; 15(1): 155-63, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11952137

RESUMO

Encephalomyocarditis virus (EMCV) and Mengo virus are highly virulent murine cardioviruses that are found in abundant quantities in the spleen and lymph nodes after infection. T lymphocytes are pivotal mediators of humoral and cellular immunity against cardioviral challenge, and are highly suspect candidates of EMCV and Mengo virus infection. We found T lymphocyte-like cell lines CTLL-2, EL-4, LY1+2/9, and LBRM33 were susceptible to productive viral infection and exhibited cytopathology after infection with virulent EMCV-R or attenuated Mengo virus strains vMC0 and vMC24. Flow cytometric analysis demonstrated progressive intracellular accumulation of viral proteins, such as the replication-dependent 3D viral polymerase, in EL-4 cells during infection. Conversely, freshly isolated and mitogen-stimulated CD4+ and CD8+ T cells were resistant to productive infection with these viruses, exhibiting no viral-induced cytopathic effects or intracellular presence of viral proteins. These data indicate that although T-lymphocyte-like tumor cell lines are highly susceptible to viral infection and cytopathic effects, primary/freshly isolated T cells are resistant to infection by EMCV-R or Mengo virus.


Assuntos
Vírus da Encefalomiocardite/fisiologia , Mengovirus/fisiologia , Linfócitos T/virologia , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Virais/análise , Replicação Viral , eIF-2 Quinase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...