Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6784-6791, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152109

RESUMO

Infection by Rhinovirus-C (RV-C), a species of Picornaviridae Enterovirus, is strongly associated with childhood asthma exacerbations. Cellular binding and entry by all RV-C, which trigger these episodes, is mediated by the first extracellular domain (EC1) of cadherin-related protein 3 (CDHR3), a surface cadherin-like protein expressed primarily on the apical surfaces of ciliated airway epithelial cells. Although recombinant EC1 is a potent inhibitor of viral infection, there is no molecular description of this protein or its binding site on RV-C. Here we present cryo-electron microscopy (EM) data resolving the EC1 and EC1+2 domains of human CDHR3 complexed with viral isolate C15a. Structure-suggested residues contributing to required interfaces on both EC1 and C15a were probed and identified by mutagenesis studies with four different RV-C genotypes. In contrast to most other rhinoviruses, which bind intercellular adhesion molecule 1 receptors via a capsid protein VP1-specific fivefold canyon feature, the CDHR3 EC1 contacts C15a, and presumably all RV-Cs, in a unique cohesive footprint near the threefold vertex, encompassing residues primarily from viral protein VP3, but also from VP1 and VP2. The EC1+2 footprint on C15a is similar to that of EC1 alone but shows that steric hindrance imposed by EC2 would likely prevent multiprotein binding by the native receptor at any singular threefold vertex. Definition of the molecular interface between the RV-Cs and their receptors provides new avenues that can be explored for potential antiviral therapies.


Assuntos
Caderinas/química , Caderinas/metabolismo , Microscopia Crioeletrônica/métodos , Enterovirus/química , Enterovirus/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Proteínas Relacionadas a Caderinas , Enterovirus/classificação , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica
2.
Proc Natl Acad Sci U S A ; 113(32): 8997-9002, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27511920

RESUMO

Isolates of rhinovirus C (RV-C), a recently identified Enterovirus (EV) species, are the causative agents of severe respiratory infections among children and are linked to childhood asthma exacerbations. The RV-C have been refractory to structure determination because they are difficult to propagate in vitro. Here, we report the cryo-EM atomic structures of the full virion and native empty particle (NEP) of RV-C15a. The virus has 60 "fingers" on the virus outer surface that probably function as dominant immunogens. Because the NEPs also display these fingers, they may have utility as vaccine candidates. A sequence-conserved surface depression adjacent to each finger forms a likely binding site for the sialic acid on its receptor. The RV-C, unlike other EVs, are resistant to capsid-binding antiviral compounds because the hydrophobic pocket in VP1 is filled with multiple bulky residues. These results define potential molecular determinants for designing antiviral therapeutics and vaccines.


Assuntos
Asma/etiologia , Enterovirus/ultraestrutura , Vírion/ultraestrutura , Asma/virologia , Sequência Conservada , Microscopia Crioeletrônica , Glicosilação , Humanos , Receptores Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...