Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 8(2): 025002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842667

RESUMO

Significance: High-density diffuse optical tomography (HD-DOT) has been shown to approach the resolution and localization accuracy of blood oxygen level dependent-functional magnetic resonance imaging in the adult brain by exploiting densely spaced, overlapping samples of the probed tissue volume, but the technique has to date required large and cumbersome optical fiber arrays. Aim: To evaluate a wearable HD-DOT system that provides a comparable sampling density to large, fiber-based HD-DOT systems, but with vastly improved ergonomics. Approach: We investigated the performance of this system by replicating a series of classic visual stimulation paradigms, carried out in one highly sampled participant during 15 sessions to assess imaging performance and repeatability. Results: Hemodynamic response functions and cortical activation maps replicate the results obtained with larger fiber-based systems. Our results demonstrate focal activations in both oxyhemoglobin and deoxyhemoglobin with a high degree of repeatability observed across all sessions. A comparison with a simulated low-density array explicitly demonstrates the improvements in spatial localization, resolution, repeatability, and image contrast that can be obtained with this high-density technology. Conclusions: The system offers the possibility for minimally constrained, spatially resolved functional imaging of the human brain in almost any environment and holds particular promise in enabling neuroscience applications outside of the laboratory setting. It also opens up new opportunities to investigate populations unsuited to traditional imaging technologies.

2.
Neurophotonics ; 3(3): 031408, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27446969

RESUMO

Burst suppression (BS) is an electroencephalographic state associated with a profound inactivation of the brain. BS and pathological discontinuous electroencephalography (EEG) are often observed in term-age infants with neurological injury and can be indicative of a poor outcome and lifelong disability. Little is known about the neurophysiological mechanisms of BS or how the condition relates to the functional state of the neonatal brain. We used simultaneous EEG and diffuse optical tomography (DOT) to investigate whether bursts of EEG activity in infants with hypoxic ischemic encephalopathy are associated with an observable cerebral hemodynamic response. We were able to identify significant changes in concentration of both oxy and deoxyhemoglobin that are temporally correlated with EEG bursts and present a relatively consistent morphology across six infants. Furthermore, DOT reveals patient-specific spatial distributions of this hemodynamic response that may be indicative of a complex pattern of cortical activation underlying discontinuous EEG activity that is not readily apparent in scalp EEG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...