Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(20): 5921-30, 2001 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-11352727

RESUMO

PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with the consensus sequence -E-S/T-X-V-COOH, also binds the neuronal nitric oxide synthase (nNOS) PDZ domain in a manner that does not depend on its precise COOH-terminal sequence. In the structure of the syntrophin-nNOS PDZ heterodimer complex, the two PDZ domains interact in a head-to-tail fashion, with an internal sequence from the nNOS PDZ domain binding precisely at the peptide binding groove of the syntrophin PDZ domain. To understand the energetic basis of this alternative mode of PDZ recognition, we have undertaken an extensive mutagenic and biophysical analysis of the nNOS PDZ domain and its interaction with the syntrophin PDZ domain. Our data indicate that the presentation of the nNOS internal motif within the context of a rigid beta-hairpin conformation is absolutely essential to binding; amino acids crucial to the structural integrity of the hairpin are as important or more important than residues that make direct contacts. The results reveal the general rules of PDZ recognition of diverse ligand types.


Assuntos
Proteínas de Membrana/química , Proteínas Musculares/química , Proteínas do Tecido Nervoso/química , Óxido Nítrico Sintase/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Ligação Competitiva/genética , Proteínas de Ligação ao Cálcio , Dicroísmo Circular , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Fragmentos de Peptídeos/genética , Ligação Proteica/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Soluções , Termodinâmica
2.
J Biol Chem ; 274(39): 27467-73, 1999 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-10488080

RESUMO

Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Dicroísmo Circular , Clonagem Molecular , Proteína 4 Homóloga a Disks-Large , Guanidina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Proteínas de Membrana , Modelos Moleculares , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase Tipo I , Conformação Proteica , Ratos , Receptores de N-Metil-D-Aspartato/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfecção
3.
Science ; 284(5415): 812-5, 1999 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-10221915

RESUMO

The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PDZ domain has two opposite interaction surfaces-one face has the canonical peptide binding groove, whereas the other has a beta-hairpin "finger." This nNOS beta finger docks in the syntrophin peptide binding groove, mimicking a peptide ligand, except that a sharp beta turn replaces the normally required carboxyl terminus. This structure explains how PDZ domains can participate in diverse interaction modes to assemble protein networks.


Assuntos
Proteínas Associadas à Distrofina , Proteínas de Membrana/química , Proteínas Musculares/química , Óxido Nítrico Sintase/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Ligantes , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transdução de Sinais
4.
Fold Des ; 3(2): 87-93, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9565753

RESUMO

BACKGROUND: CspA is a small protein that binds single-stranded RNA and DNA. The binding site of CspA consists of a cluster of aromatic amino acids, which form an unusually large nonpolar patch on the surface of the protein. Because nonpolar residues are generally found in the interiors of proteins, this cluster may have evolved to bind nucleic acids at the expense of protein stability. RESULTS: Three neighboring phenylalanines have been mutated singly and in combination to leucine and to serine. All mutations adversely affect DNA binding. Surprisingly, all mutations, and especially those to serine, are destabilizing. CONCLUSIONS: The aromatic cluster in CspA is required not only for protein function but also for protein stability. This result is pertinent to the design of beta-sheet proteins and single-stranded nucleic acid binding proteins, whose binding mode is proposed to be of aromatic-aromatic intercalation.


Assuntos
Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Ligação a RNA/química , Proteínas de Bactérias , Sítios de Ligação/genética , Dicroísmo Circular , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico/genética , Modelos Moleculares , Mutagênese Insercional/genética , Desnaturação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/genética , Ureia/farmacologia
5.
Protein Sci ; 7(2): 470-9, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9521124

RESUMO

Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Dobramento de Proteína , Dicroísmo Circular , Desnaturação Proteica , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...