Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 13(12): 1052, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535942

RESUMO

Glucocorticoids (GCs) are widely used in tumor therapy to reduce tumor growth, inflammation, edema, and other side effects. Controversially, GCs may also cause the progression of highly aggressive pancreatic ductal adenocarcinoma (PDAC). Because microRNA (miR) and autophagy signaling support the invasive growth of PDAC, we asked whether these mechanisms may be targeted by GCs. Six established human PDAC cell lines, tissue from patients who received GC medication (n = 35) prior to surgery, or not (n = 35), and tumor xenografts were examined by RT‒qPCR, transmission electron microscopy (TEM), monodansylcadaverine (MDC) staining, immunohistochemistry, in situ hybridization, gene array and Kaplan‒Meier analysis with bioinformatics, and MTT, western blot, colony, spheroid, migration, and invasion assays. We found that various GCs, including dexamethasone (DEX), induced typical features of macroautophagy with the appearance of autolysosomes, enhanced LC3-II, decreased SQSTM1/p62 expression and induced epithelial-mesenchymal transition (EMT) and gemcitabine resistance. The GC receptor (GR) antagonist mifepristone (RU486) counteracted DEX-induced autophagy features, suggesting that the GC-GR complex is involved in the induction of autophagy. The autophagy-related miR-378i and miR-378a-3p were selected as the top upregulated candidates, and their high expression in PDAC patient tissue correlated with low survival. siRNA-mediated downregulation of miR-378 inhibited DEX-induced autophagy, and tumor progression. Bioinformatics confirmed the contribution of miR-378 to the regulation of signaling networks involved in GC-induced autophagy and tumor progression. The construction of a molecular docking model revealed stable binding of miR-378 to the DEX-GR complex, suggesting direct regulation. These substantial, novel, in-depth data reveal that GCs favor autophagy-mediated cancer progression by inducing miR-378 and GR binding and implicate GR and miR-378 as new therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , Autofagia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucocorticoides/farmacologia , MicroRNAs/genética , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/patologia , Animais , Neoplasias Pancreáticas
3.
Biomed Pharmacother ; 153: 113511, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076598

RESUMO

Silver has been in clinical use since ancient times and silver nanoparticles (AgNPs) have attracted attention in cancer therapy. We investigated the mechanisms by which AgNPs inhibit pancreatic ductal adenocarcinoma (PDAC). AgNPs were synthesized and 3 human PDAC and 2 nonmalignant primary cell lines were treated with AgNPs. MTT, MAPK, colony, spheroid and scratch assays, Western blotting, TEM, annexin V, 7-AAD, and H2DCFDA staining, FACS analysis, mRNA array and bioinformatics analyses, tumor xenograft transplantation, and immunohistochemistry of the treated cells were performed. We found that minimal AgNPs amounts selectively eradicated PDAC cells within a few hours. AgNPs inhibited cell migration and spheroid and colony formation, damaged mitochondria, and induced paraptosis-like cell death with the presence of cytoplasmic vacuoles, dilation of the ER and mitochondria, ROS formation, MAPK activity, and p62 and LC3b expression, whereas effects on the nucleus, DNA fragmentation, or caspases were not detectable. AgNPs strongly decreased tumor xenograft growth without side effects and reduced the expression of markers for proliferation and DNA repair, but upregulated paraptosis markers. The results highlight nanosilver as complementary agent to improve the therapeutic efficacy in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas Metálicas , Neoplasias Pancreáticas , Apoptose , Carcinoma Ductal Pancreático/genética , Morte Celular , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Prata/farmacologia , Prata/uso terapêutico , Neoplasias Pancreáticas
4.
Plant Cell ; 34(6): 2424-2448, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35348751

RESUMO

Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Gotículas Lipídicas/metabolismo , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo
5.
Biomedicines ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203650

RESUMO

Neutrophils are classically characterized as merely reactive innate effector cells. However, the microbiome is known to shape the education and maturation process of neutrophils, improving their function and immune-plasticity. Recent reports demonstrate that murine neutrophils possess the ability to exert adaptive responses after exposure to bacterial components such as LPS (Gram-negative bacteria) or LTA (Gram-positive bacteria). We now ask whether small extracellular vesicles (EVs) from the gut may directly mediate adaptive responses in neutrophils in vitro. Murine bone marrow-derived neutrophils were primed in vitro by small EVs of high purity collected from colon stool samples, followed by a second hit with LPS. We found that low-dose priming with gut microbiota-derived small EVs enhanced pro-inflammatory sensitivity as indicated by elevated levels of TNF-α, IL-6, ROS and MCP-1 and increased migratory and phagocytic activity. In contrast, high-dose priming resulted in a tolerant phenotype, marked by increased IL-10 and decreased transmigration and phagocytosis. Alterations in TLR2/MyD88 as well as TLR4/MyD88 signaling were correlated with the induction of adaptive cues in neutrophils in vitro. Taken together, our study shows that small EVs from stools can drive adaptive responses in neutrophils in vitro and may represent a missing link in the gut-immune axis.

6.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638256

RESUMO

Silver nanoparticles (AgNPs) have attracted attention in cancer therapy and might support the treatment of pancreatic ductal adenocarcinoma (PDAC). Silver is in clinical use in wound dressings, catheters, stents and implants. However, the side effects of systemic AgNP treatment due to silver accumulation limit its therapeutic application. We evaluated whether the antioxidant and natural agent α-lipoic acid might prevent these side effects. We synthesized AgNPs using an Ionic-Pulser® Pro silver generator and determined the concentration by inductively coupled plasma-optical emission spectrometry. The effect of α-lipoic acid was examined in four PDAC and two nonmalignant cell lines by MTT, FACS analysis, TEM, xenotransplantation and immunohistochemistry. The viability of PDAC cells was nearly totally abolished by AgNP treatment, whereas nonmalignant cells largely resisted. α-Lipoic acid prevented AgNP-induced cytotoxicity in nonmalignant cells but not in PDAC cells, which might be due to the higher sensitivity of malignant cells to silver-induced cytotoxicity. α-Lipoic acid protected mitochondria from AgNP-induced damage and led to precipitation of AgNPs. AgNPs reduced the growth of tumor xenografts, and cotreatment with α-lipoic acid protected chick embryos from AgNP-induced liver damage. Together, α-lipoic acid strongly reduced AgNP-induced side effects without weakening the therapeutic efficacy.

7.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528690

RESUMO

The trans-Golgi network/early endosome (TGN/EE) serves as the central hub in which exocytic and endocytic trafficking pathways converge and specificity of cargo routing needs to be achieved. Acidification is a hallmark of the TGN/EE and is maintained by the vacuolar H+-ATPase (V-ATPase) with support of proton-coupled antiporters. We show here that ClCd and ClCf, two distantly related members of the Arabidopsis Cl- channel (ClC) family, colocalize in the TGN/EE, where they act redundantly, and are essential for male gametophyte development. Combining an inducible knockdown approach and in vivo pH measurements, we show here that reduced ClC activity does not affect pH in the TGN/EE but causes hyperacidification of trans-Golgi cisternae. Taken together, our results show that ClC-mediated anion transport into the TGN/EE is essential and affects spatiotemporal aspects of TGN/EE maturation as well as its functional separation from the Golgi stack.


Assuntos
Proteínas de Arabidopsis , Rede trans-Golgi , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Fluoresceínas , Concentração de Íons de Hidrogênio , Transporte Proteico , Rede trans-Golgi/metabolismo
8.
Nat Commun ; 10(1): 4073, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501427

RESUMO

Several antitumor therapies work by increasing reactive oxygen species (ROS) within the tumor micromilieu. Here, we reveal that L-plastin (LPL), an established tumor marker, is reversibly regulated by ROS-induced thiol oxidation on Cys101, which forms a disulfide bridge with Cys42. LPL reduction is mediated by the Thioredoxin1 (TRX1) system, as shown by TRX1 trapping, TRX1 knockdown and blockade of Thioredoxin1 reductase (TRXR1) with auranofin. LPL oxidation diminishes its actin-bundling capacity. Ratiometric imaging using an LPL-roGFP-Orp1 fusion protein and a dimedone-based proximity ligation assay (PLA) reveal that LPL oxidation occurs primarily in actin-based cellular extrusions and strongly inhibits cell spreading and filopodial extension formation in tumor cells. This effect is accompanied by decreased tumor cell migration, invasion and extracellular matrix (ECM) degradation. Since LPL oxidation occurs following treatment of tumors with auranofin or γ-irradiation, it may be a molecular mechanism contributing to the effectiveness of tumor treatment with redox-altering therapies.


Assuntos
Actinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Alquilação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Cisteína/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Mutação/genética , Oxirredução , Compostos de Sulfidrila/metabolismo , Tiorredoxina Redutase 1/metabolismo
9.
Nat Plants ; 5(2): 204-211, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737514

RESUMO

During establishment of arbuscular mycorrhizal symbioses, fungal hyphae invade root cells producing transient tree-like structures, the arbuscules, where exchange of photosynthates for soil minerals occurs. Arbuscule formation and collapse lead to rapid production and degradation of plant and fungal membranes, their spatiotemporal dynamics directly influencing nutrient exchange. We determined the ultra-structural details of both membrane surfaces and the interstitial apoplastic matrix by transmission electron microscopy tomography during growth and senescence of Rhizophagus irregularis arbuscules in rice. Invasive growth of arbuscular hyphae was associated with abundant fungal membrane tubules (memtubs) and plant peri-arbuscular membrane evaginations. Similarly, the phylogenetically distant arbuscular mycorrhizal fungus, Gigaspora rosea, and the fungal maize pathogen, Ustilago maydis, developed memtubs while invading host cells, revealing structural commonalities independent of the mutualistic or parasitic outcome of the interaction. Additionally, extracellular vesicles formed continuously in the peri-arbuscular interface from arbuscule biogenesis to senescence, suggesting an involvement in inter-organismic signal and nutrient exchange throughout the arbuscule lifespan.


Assuntos
Membrana Celular/ultraestrutura , Vesículas Extracelulares/metabolismo , Micorrizas/fisiologia , Oryza/microbiologia , Células Vegetais/microbiologia , Membrana Celular/microbiologia , Tomografia com Microscopia Eletrônica , Glomeromycota/fisiologia , Hifas/fisiologia , Micorrizas/citologia , Oryza/citologia , Oryza/genética , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Simbiose , Ustilago/patogenicidade , Zea mays/microbiologia
10.
Nat Commun ; 9(1): 4677, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410018

RESUMO

In terrestrial ecosystems most plant species live in mutualistic symbioses with nutrient-delivering arbuscular mycorrhizal (AM) fungi. Establishment of AM symbioses includes transient, intracellular formation of fungal feeding structures, the arbuscules. A plant-derived peri-arbuscular membrane (PAM) surrounds the arbuscules, mediating reciprocal nutrient exchange. Signaling at the PAM must be well coordinated to achieve this dynamic cellular intimacy. Here, we identify the PAM-specific Arbuscular Receptor-like Kinase 1 (ARK1) from maize and rice to condition sustained AM symbiosis. Mutation of rice ARK1 causes a significant reduction in vesicles, the fungal storage structures, and a concomitant reduction in overall root colonization by the AM fungus Rhizophagus irregularis. Arbuscules, although less frequent in the ark1 mutant, are morphologically normal. Co-cultivation with wild-type plants restores vesicle and spore formation, suggesting ARK1 function is required for the completion of the fungal life-cycle, thereby defining a functional stage, post arbuscule development.


Assuntos
Micorrizas/metabolismo , Oryza/enzimologia , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Microdissecção e Captura a Laser , Proteínas de Membrana/metabolismo , Membranas , Mutação/genética , Micorrizas/ultraestrutura , Oryza/ultraestrutura , Regiões Promotoras Genéticas/genética , Proteoma/metabolismo , Simbiose , Transcriptoma/genética , Zea mays/metabolismo , Zea mays/microbiologia
11.
Antiviral Res ; 158: 135-142, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031759

RESUMO

One of the most promising viral targets in current hepatitis B virus (HBV) drug development is the core protein due to its multiple roles in the viral life cycle. Here we investigated the differences in the mode of action and antiviral activity of representatives of six different capsid assembly modifier (CAM) scaffolds: three from the well-characterized scaffolds heteroarylpyrimidine (HAP), sulfamoylbenzamide (SBA), and phenylpropenamide (PPA), and three from novel scaffolds glyoxamide-pyrrolamide (GPA), pyrazolyl-thiazole (PT), and dibenzo-thiazepin-2-one (DBT). The target activity and antiviral efficacy of the different CAMs were tested in biochemical and cellular assays. Analytical size exclusion chromatography and transmission electron microscopy showed that only the HAP compound induced formation of aberrant non-capsid structures (class II mode of action), while the remaining CAMs did not affect capsid gross morphology (class I mode of action). Intracellular lysates from the HepAD38 cell line, inducibly replicating HBV, showed no reduction in the quantities of intracellular core protein or capsid after treatment with SBA, PPA, GPA, PT, or DBT compounds; however HAP-treatment led to a profound decrease in both. Additionally, immunofluorescence staining of compound-treated HepAD38 cells showed that all non-HAP CAMs led to a shift in the equilibrium of HBV core antigen (HBcAg) towards complete cytoplasmic staining, while the HAP induced accumulation of HBcAg aggregates in the nucleus. Our study demonstrates that the novel scaffolds GPA, PT, and DBT exhibit class I modes of action, alike SBA and PPA, whereas HAP remains the only scaffold belonging to class II inhibitors.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Antivirais/química , Benzamidas/química , Benzamidas/farmacologia , Benzoatos , Linhagem Celular , Desenvolvimento de Medicamentos , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B/metabolismo , Humanos , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas do Core Viral , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
J Vis Exp ; (133)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29630046

RESUMO

Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Imagem Multimodal/métodos , Humanos
14.
Plant Sci ; 266: 9-18, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241571

RESUMO

Soluble vacuolar proteins reach their compartments of final accumulation through the binding with specific transmembrane cargo receptors. In Arabidopsis thaliana two different families of receptors have been characterized. The AtVSRs (Vacuolar Sorting Receptor), which are known to be involved in the protein sorting to lytic vacuoles (LV), and the AtRMRs (Receptor Membrane RING-H2), for which there is less evidence for a role in the traffic to the protein storage vacuole (PSV). In this study we investigated the localization and tissue expression of two RMRs (AtRMR1 and 2) in their species of origin, A. thaliana. Our experiments using leaf protoplasts and transgenic plants supported previous results of subcellular localization in Nicotiana benthamiana that visualized AtRMR1 and 2 in the cisternae of endoplasmic reticulum (ER) and in the trans-Golgi network (TGN), respectively. The promoter activities of AtRMR1 and AtRMR2 detected in transgenic A. thaliana lines suggest that the expression of these two receptors only partially overlap in some organs and tissues. These results suggest that AtRMR1 and 2 are not functionally redundant, but could also interact and participate in the same cellular process in tissues with an overlapping expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Especificidade de Órgãos , Células Vegetais/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo
15.
Sci Rep ; 7(1): 14235, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079824

RESUMO

Seed germination and postgerminative growth of Arabidopsis thaliana and various other plant species are arrested in response to unfavourable environmental conditions by signalling events involving the phytohormone abscisic acid (ABA). In this study, we showed that loss of the seed-specific WRKY DNA-BINDING PROTEIN 43 (WRKY43) conferred increased tolerance towards high salt, high osmolarity and low temperature during seed germination in Arabidopsis. The wrky43 loss of function lines displayed increased inhibition of seed germination in response to exogenous ABA; whereas lines overexpressing WRKY43 were more tolerant towards exogenous ABA. Biochemical analysis of fatty acid composition revealed that loss of WRKY43 increased polyunsaturated fatty acid content in seeds, particularly 18:2Δ9,12 and 18:3Δ9,12,15 in triacylglycerols and phospholipids, indicating an important physiological effect on fatty acid desaturation with ramifications for the tolerance of plants to cold and osmotic stress and possibly, for oilseed engineering. Molecular analyses showed that ABA-induced regulation of FUSCA3, ZAT10 and seed storage proteins were absent in the wrky43 mutant. In summary, WRKY43 encodes for a novel positive regulator of ABA-dependent gene regulation and as a potent modulator of fatty acid desaturation and seed filling, which results in increased tolerance to abiotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , Germinação , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Resposta ao Choque Frio/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Manitol/farmacologia , Mutagênese Insercional/genética , Pressão Osmótica/efeitos dos fármacos , Fosfolipídeos/metabolismo , Estresse Salino/efeitos dos fármacos , Sementes/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
BMC Cell Biol ; 17(1): 38, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955619

RESUMO

BACKGROUND: Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. RESULTS: To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. CONCLUSIONS: Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM volume data at different levels of resolution can yield comprehensive information, including statistics, morphology and organization of cells and tissue. We predict, that hierarchical imaging will be a first step in tackling the big data issue inevitably connected with volume EM.


Assuntos
Tamanho Celular , Imageamento Tridimensional/métodos , Especificidade de Órgãos , Animais , Arabidopsis/anatomia & histologia , Polaridade Celular , Microscopia de Fluorescência , Nanotecnologia , Organelas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Peixe-Zebra
17.
Traffic ; 16(7): 760-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25712715

RESUMO

Fusion of exocytotic vesicles with the plasma membrane gives rise to an increase in membrane surface area, whereas the surface area is decreased when vesicles are internalized during endocytosis. Changes in membrane surface area, resulting from fusion and fission of membrane vesicles, can be followed by monitoring the corresponding proportional changes in membrane capacitance. Using the cell-attached configuration of the patch-clamp techniques we were able to resolve the elementary processes of endo- and exocytosis in yeast protoplasts at high temporal and spatial resolution. Spontaneous capacitance changes were predominantly in the range of 0.2-1 fF which translates to vesicle diameters of 90-200 nm. The size distribution revealed that endocytotic vesicles with a median at about 132 nm were smaller than exocytotic vesicles with a median at 155 nm. In energized and metabolizing protoplasts, endo- and exocytotic events occurred at frequencies of 1.6 and 2.7 events per minute, respectively. Even though these numbers appear very low, they are in good agreement with the observed growth rate of yeast cells and protoplasts.


Assuntos
Membrana Celular/metabolismo , Endocitose , Exocitose , Potenciais da Membrana , Saccharomyces cerevisiae/metabolismo , Membrana Celular/fisiologia
18.
Development ; 141(21): 4139-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256344

RESUMO

Tissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic. In Arabidopsis, signal transduction mediated by the receptor-like kinase STRUBBELIG (SUB) contributes to inter-cell layer signaling during tissue morphogenesis. Previous analysis has revealed that SUB acts non-cell-autonomously suggesting that SUB controls tissue morphogenesis by participating in the formation or propagation of a downstream mobile signal. A genetic screen identified QUIRKY (QKY), encoding a predicted membrane-anchored C2-domain protein, as a component of SUB signaling. Here, we provide further insight into the role of QKY in this process. We show that like SUB, QKY exhibits non-cell-autonomy when expressed in a tissue-specific manner and that non-autonomy of QKY extends across several cells. In addition, we report on localization studies indicating that QKY and SUB localize to PD but independently of each other. FRET-FLIM analysis suggests that SUB and QKY are in close contact at PD in vivo. We propose a model where SUB and QKY interact at PD to promote tissue morphogenesis, thereby linking RLK-dependent signal transduction and intercellular communication mediated by PD.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plasmodesmos/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/fisiologia
19.
Plant J ; 78(1): 146-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24479654

RESUMO

Stimulus-specific calcium (Ca(2+) ) signals have crucial functions in developmental processes in many organisms, and are deciphered by various Ca(2+) -binding proteins. In Arabidopsis thaliana, a signaling network consisting of calcineurin B-like (CBL) protein calcium sensors and CBL-interacting protein kinases (CIPKs) has been shown to fulfil pivotal functions at the plasma membrane in regulating ion fluxes and abiotic stress responses. However, the role of tonoplast-localized CBL proteins and especially their function in regulating developmental programs remains largely unknown. In this study, we analyzed single and double mutants of the closely related tonoplast-localized calcium sensors CBL2 and CBL3, which show either reduction of function (rf) or complete loss of function (lf). While single cbl2 or cbl3 mutants did not display discernable phenotypes, cbl2/cbl3 mutants exhibited defects in vegetative growth and were severely impaired in seed development and morphology. Seeds of the cbl2/3rf mutant were smaller in size and exhibited reduced weight and fatty acid content compared to wild-type, but accumulation of sucrose was not altered. Moreover, accumulation of inositol hexakisphosphate (InsP6 ), the major storage form of phosphorus in seeds, was significantly reduced in mutant seeds. In addition, complete loss of CBL2 and CBL3 function in cbl2/3lf resulted in a high frequency of severe defects in embryonic development. Together, our findings reveal a crucial function of Ca(2+) -controlled processes at the vacuolar membrane as determinants of seed yield and size, and demonstrate the importance of vacuolar CBL calcium sensors for plant embryogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/genética , Arabidopsis/embriologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biomassa , Calcineurina/genética , Calcineurina/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Mutação , Plantas Geneticamente Modificadas , Sementes/embriologia , Sementes/fisiologia , Vacúolos/metabolismo
20.
Plant Cell ; 25(9): 3434-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24014545

RESUMO

Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Retículo Endoplasmático/metabolismo , Vacúolos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Genes Reporter , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Metabolismo dos Lipídeos , Meristema/enzimologia , Meristema/genética , Meristema/fisiologia , Meristema/ultraestrutura , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...