Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Interv Card Electrophysiol ; 5(4): 495-503, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11752919

RESUMO

UNLABELLED: Auxiliary shocks (AS) from electrodes sutured to the left ventricle (LV) prior to primary biphasic shocks (PS) have been shown to reduce defibrillation thresholds (DFT). Two capacitors are required to generate these waveforms. We investigate delivery of AS from one capacitor using a novel waveform. The epicardial surface of the LV is accessed transvenously via the middle cardiac vein (MCV) avoiding a thoracotomy. METHODS: A defibrillation electrode was placed in the right ventricle (RV) and superior vena cava (SVC) in 12 pigs (37+/-2 kg). A 50x1.8 mm electrode was inserted in the MCV through a guide catheter. A can was placed in the left pectoral region. A monophasic AS (100 microF, 1.5 J) was delivered along one pathway before switching to deliver a biphasic waveform (40% tilt, 2 ms phase 2) along another. DFTs (PS+AS) were assessed using a binary search. Two configurations not incorporating AS acted as controls. DFTs were compared using repeated measures analysis of variance. RESULTS: DFTs of the four novel configurations (AS/PS) were: RV-->Can/MCV-->Can=14.9+/-3.7 J, MCV-->Can/RV-->Can=17.2+/-5.7 J, RV-->SVC+Can/MCV-->SVC+Can=13.4+/-4.6 J, MCV-->SVC+Can/RV-->SVC+Can=17.1+/-5.9 J. Delivering AS in the RV followed by PS in the MCV reduced the DFT (RV-->Can (19.9+/-7.3 J, P<0.01) and RV-->SVC+Can (19.2+/-6.0 J, P<0.05)). CONCLUSIONS: Delivering AS prior to PS in the MCV reduces the DFT by up to a third compared to conventional configurations of RV-->Can and RV-->SVC+Can. This is possible using only a single capacitor and an entirely transvenous approach to the LV.


Assuntos
Vasos Coronários/fisiologia , Vasos Coronários/cirurgia , Desfibriladores Implantáveis , Cardioversão Elétrica/instrumentação , Limiar Sensorial/fisiologia , Animais , Impedância Elétrica , Eletrodos Implantados , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Desenho de Equipamento , Ventrículos do Coração/cirurgia , Modelos Animais , Modelos Cardiovasculares , Suínos , Função Ventricular
2.
Pacing Clin Electrophysiol ; 20(12 Pt 1): 2911-6, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9455750

RESUMO

The polarity of a monophasic and biphasic shocks have been reported to influence DFTs in some studies. The purpose of this study was to evaluate the effect of the first phase polarity on the DFT of a biphasic shock utilizing a nonthoracotomy "hot can" electrode configuration which had a 90-microF capacitance. We tested the hypothesis that anodal first phase was more effective than cathodal ones for defibrillation using biphasic shocks in ten anesthetized pigs weighing 38.9 +/- 3.9 kg. The lead system consisted of a right ventricular catheter electrode with a surface area of 2.7 cm2 and a left pectoral "hot can" electrode with 92.9 cm2 surface area. DFT was determined using a repeated "down-up" technique. A shock was tested 10 seconds after initiation of ventricular fibrillation. The mean delivered energy at DFT was 11.2 +/- 1.7 J when using the right ventricular apex electrode as the cathode and 11.3 +/- 1.2 J (P = NS) when using it as the anode. The peak voltage at DFT was also not significantly different (529.0 +/- 41.3 and 531.8 +/- 28.6 V, respectively). We concluded that the first phase polarity of a biphasic shock used with a nonthroracotomy "hot can" electrode configuration did not affect DFT.


Assuntos
Cardioversão Elétrica , Eletrodos , Fibrilação Ventricular/terapia , Animais , Cateterismo Cardíaco , Modelos Animais de Doenças , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/métodos , Eletrocardiografia , Suínos , Resultado do Tratamento , Fibrilação Ventricular/fisiopatologia
3.
Circulation ; 94(7): 1768-73, 1996 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8840873

RESUMO

BACKGROUND: Multiple factors contribute to an improved defibrillation threshold of biphasic shocks. The leading-edge voltage of the second phase may be an important factor in reducing the defibrillation threshold. METHODS AND RESULTS: We tested two experimental biphasic waveforms with large voltage changes at phase reversal. The phase 2 leading-edge voltage was twice the phase 1 trailing-edge voltage. This large voltage change was achieved by switching two capacitors from parallel to series mode at phase reversal. Two capacitors were tested (60/15 microfarads [microF] and 90/22.5 microF) and compared with two control biphasic waveforms for which the phase 1 trailing-edge voltage equaled the phase 2 leading-edge voltage. The control waveforms were incorporated into clinical (135/135 microF) or investigational devices (90/90 microF). Defibrillation threshold parameters were evaluated in eight anesthetized pigs by use of a nonthoracotomy transvenous lead to a can electrode system. The stored energy at the defibrillation threshold (ion joules) was 8.2 +/- 1.5 for 60/15 microF (P < .01 versus 135/135 microF and 90/90 microF), 8.8 +/- 2.4 for 90/22.5 microF (P < .01 versus 135/135 microF and 90/90 microF), 12.5 +/- 3.4 for 135/135 microF, and 12.6 +/- 2.6 for 90/90 microF. CONCLUSIONS: The biphasic waveform with large voltage changes at phase reversal caused by parallel-series mode switching appeared to improve the ventricular defibrillation threshold in a pig model compared with a currently available biphasic waveform. The 60/15-microF capacitor performed as well as the 90/ 22.5-microF capacitor in the experimental waveform. Thus, smaller capacitors may allow reduction in device size without sacrificing defibrillation threshold energy requirements.


Assuntos
Cardioversão Elétrica/métodos , Animais , Limiar Diferencial , Eletricidade , Desenho de Equipamento , Suínos , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...