Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896029

RESUMO

Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.


Assuntos
Secas , Eucalyptus , Água , Xilema , Eucalyptus/fisiologia , Eucalyptus/genética , Xilema/fisiologia , Xilema/metabolismo , Água/metabolismo , Água/fisiologia , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Tamanho Celular , Parede Celular/metabolismo , Madeira/fisiologia , Transcriptoma
2.
Plant Sci ; 340: 111970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163623

RESUMO

Quantitative wood anatomy is a subfield in dendrochronology that requires effective open-source image analysis tools. In this research, the bioimage analysis software QuPath (v0.4.4) is introduced as a candidate for accurately quantifying the cellular properties of the xylem in an automated manner. Additionally, the potential of QuPath to detect the transition of early- to latewood tracheids over the growing season was evaluated to assess a potential application in dendroecological studies. Various algorithms in QuPath were optimized to quantify different xylem cell types in Eucalyptus grandis and the transition of early- to latewood tracheids in Pinus radiata. These algorithms were coded into cell detection scripts for automatic quantification of stem microsections and compared to a manually curated method to assess the accuracy of the cell detections. The automatic cell detection approach, using QuPath, has been validated to be reproducible with an acceptable error when assessing fibers, vessels, early- and latewood tracheids. However, further optimization for parenchyma is still required. This proposed method developed in QuPath provides a scalable and accurate approach for quantifying anatomical features in stem microsections. With minor amendments to the detection and classification algorithms, this strategy is likely to be viable in other plant species.


Assuntos
Eucalyptus , Pinus , Madeira/anatomia & histologia , Xilema , Estações do Ano
3.
Planta ; 248(2): 477-488, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777364

RESUMO

MAIN CONCLUSION: Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Flavinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinorhizobium meliloti/genética , Acetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Biomassa , Divisão Celular/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flavinas/genética , Flavinas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
4.
Front Plant Sci ; 3: 120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701462

RESUMO

Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.

5.
J Plant Physiol ; 164(12): 1612-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17360069

RESUMO

Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.


Assuntos
Divisão Celular , Raízes de Plantas/citologia , Sementes/citologia , Tagetes/citologia , Temperatura , Divisão Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Tamanho Celular/efeitos dos fármacos , DNA de Plantas/análise , Etilenos/farmacologia , Germinação/efeitos dos fármacos , Glicosídeos/farmacologia , Raízes de Plantas/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Piridonas/farmacologia , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Tagetes/efeitos dos fármacos , Tagetes/enzimologia
6.
J Plant Physiol ; 162(11): 1270-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16323279

RESUMO

Thermoinhibition in Tagetes minuta achenes is tightly and rapidly regulated with regard to its imposition and release, with both processes occurring within 2-3h. Germination at high temperatures is almost exclusively regulated by the embryo, while the pericarp appears to play only a minor role. Thermoinhibition in T. minuta could not be alleviated by any single plant growth regulator application, but a combination of treatments that both reduced ABA levels and increased ethylene levels were able to restore germination at supraoptimal temperatures. This suggests a role for both ethylene and ABA in the imposition of thermoinhibition in this species.


Assuntos
Tagetes/fisiologia , Temperatura , Ácido Abscísico/metabolismo , Germinação , Cinética , Sementes/fisiologia , Tagetes/embriologia , Tagetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...