Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986010

RESUMO

Algae biotechnology holds immense promise for revolutionizing the bioeconomy through the sustainable and scalable production of various bioproducts. However, their development has been hindered by the lack of advanced genetic tools. This study introduces a synthetic biology approach to develop such tools, focusing on the construction and testing of synthetic promoters. By analyzing conserved DNA motifs within the promoter regions of highly expressed genes across six different algal species, we identified cis-regulatory elements (CREs) associated with high transcriptional activity. Combining the algorithms POWRS, STREME, and PhyloGibbs, we predicted 1511 CREs and inserted them into a minimal synthetic promoter sequence in 1, 2, or 3 copies, resulting in 4533 distinct synthetic promoters. These promoters were evaluated in vivo for their capacity to drive the expression of a transgene in a high-throughput manner through next-generation sequencing post antibiotic selection and fluorescence-activated cell sorting. To validate our approach, we sequenced hundreds of transgenic lines showing high levels of GFP expression. Further, we individually tested 14 identified promoters, revealing substantial increases in GFP expression─up to nine times higher than the baseline synthetic promoter, with five matching or even surpassing the performance of the native AR1 promoter. As a result of this study, we identified a catalog of CREs that can now be used to build superior synthetic algal promoters. More importantly, here we present a validated pipeline to generate building blocks for innovative synthetic genetic tools applicable to any algal species with a sequenced genome and transcriptome data set.

2.
Biochemistry ; 44(38): 12819-26, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16171397

RESUMO

The bicyclic coumarin ring in the aminocoumarin natural product antibiotics that target bacterial DNA gyrase is assembled from tyrosine by nonribosomal peptide synthetase logic. Tyrosine has previously been shown to be activated and installed as a phosphopantetheinyl thioester on the thiolation domain of NovH and then hydroxylated on the benzylic carbon by the heme protein NovI, generating beta-OH-Tyr-S-NovH. This aminoacyl-S-protein is the substrate for the next two orfs, Streptomyces sphaeroides NovJ and NovK, that have now been expressed in and purified from Escherichia coli as a J2K2 heterotetramer. NovJ/NovK use NADP as an electron acceptor to oxidize the beta-OH of the tyrosyl moiety to yield the tethered beta-ketotyrosyl-S-NovH. The enol tautomer is the form that predominates in the subsequently cyclized aminocoumarin scaffold. The labile beta-ketotyrosyl thioester moiety was identified by hydrolytic release from NovH, analysis by mass spectroscopy, and comparison with a synthetic sample. We also have identified a residue in NovJ that when mutated results in a 50-fold reduction in catalytic activity.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Novobiocina/biossíntese , Oxirredutases/metabolismo , Tirosina/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Catálise , Cromatografia em Gel , Cumarínicos/química , Mutação , NADP/metabolismo , Novobiocina/química , Oxirredução , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Panteteína/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptomyces/enzimologia , Tirosina/química , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...